<  Retour au portail Polytechnique Montréal

Documents dont l'auteur est "Rahman, Mohammad Masudur"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Grouper par: Auteurs ou autrices | Date de publication | Sous-type de document | Aucun groupement
Aller à : J | M | R | S | V
Nombre de documents: 8

J

Jebnoun, H., Ben Braiek, H., Rahman, M. M., & Khomh, F. (juin 2020). The scent of deep learning code : an empirical study [Communication écrite]. 17th International Conference on Mining Software Repositories (MSR 2020), Seoul, Republic of Korea. Lien externe

M

Muse, B. A., Rahman, M. M., Nagy, C., Cleve, A., Khomh, F., & Antoniol, G. (juin 2020). On the prevalence, impact and evolution of SQL Code smells in data-intensive systems [Communication écrite]. 17th International Conference on Mining Software Repositories (MSR 2020), Seoul, Republic of Korea. Lien externe

R

Rahman, M. M., Khomh, F., & Castelluccio, M. (2022). Works for me! Cannot reproduce: A large scale empirical study of non-reproducible bugs. Empirical Software Engineering, 27(5), 111 (45 pages). Lien externe

Rahman, M. M., Khomh, F., Yeasmin, S., & Roy, C. K. (2021). The forgotten role of search queries in IR-based bug localization: an empirical study. Empirical Software Engineering, 26(6), 116 (56 pages). Lien externe

Rahman, M. M., Khomh, F., & Castelluccio, M. (septembre 2020). Why are Some Bugs Non-Reproducible? : An Empirical Investigation using Data Fusion [Communication écrite]. IEEE International Conference on Software Maintenance and Evolution (ICSME 2020). Lien externe

S

Shah, M. B., Rahman, M. M., & Khomh, F. (2024). Towards enhancing the reproducibility of deep learning bugs: an empirical study. Empirical Software Engineering, 30(1), -. Lien externe

Silva, R. F., Rahman, M. M., Dantas, C. E., Roy, C., Khomh, F., & Maia, M. A. (2021). Improved retrieval of programming solutions with code examples using a multi-featured score. Journal of Systems and Software, 181, 14 pages. Lien externe

V

Vahedi, M., Rahman, M. M., Khomh, F., Uddin, G., & Antoniol, G. (mars 2021). Summarizing Relevant Parts from Technical Videos [Communication écrite]. IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER 2021), Honolulu, HI, USA. Lien externe

Liste produite: Thu Nov 21 04:04:40 2024 EST.