![]() | Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
A word cloud is a visual representation of the most frequently used words in a text or a set of texts. The words appear in different sizes, with the size of each word being proportional to its frequency of occurrence in the text. The more frequently a word is used, the larger it appears in the word cloud. This technique allows for a quick visualization of the most important themes and concepts in a text.
In the context of this page, the word cloud was generated from the publications of the author {}. The words in this cloud come from the titles, abstracts, and keywords of the author's articles and research papers. By analyzing this word cloud, you can get an overview of the most recurring and significant topics and research areas in the author's work.
The word cloud is a useful tool for identifying trends and main themes in a corpus of texts, thus facilitating the understanding and analysis of content in a visual and intuitive way.
Leveque, B., Shyaka, A. I., Ndong, M., Kammoun, R., Burnet, J.-B., Dorner, S., & Bichai, F. (2025). Vulnerability assessment of drinking water intakes to microbial contamination during combined sewer overflows under global change: A bottom-up approach. PLOS Water, 21 pages. External link
Leveque, B., Irakiza Shyaka, A., Ndong, M., Jalbert, J., Burnet, J.-B., Kammoun, R., Dorner, S., & Bichai, F. (2024). Assessing the vulnerability of urban drinking water intakes to water scarcity under global change: A bottom-up approach. Environmental challenges, 15, 11 pages. External link
Ndong, M., Bird, D., Nguyen Quang, T., Kahawita, R., Hamilton, D., de Boutray, M. L., Prévost, M., & Dorner, S. (2017). A novel Eulerian approach for modelling cyanobacteria movement: Thin layer formation and recurrent risk to drinking water intakes. Water Research, 127(Supplement), 191-203. External link
Ndong, M. (2014). Évaluation des facteurs associés à l'occurrence des cyanobactéries à la prise d'eau et modélisation de leur distribution spatio-temporelle [Ph.D. thesis, École Polytechnique de Montréal]. Available
Zamyadi, A., Dorner, S., Ndong, M., Ellis, D., Bolduc, A., Bastien, C., & Prévost, M. (2014). Application of in vivo measurements for the management of cyanobacteria breakthrough into drinking water treatment plants. Environmental Science: Processes & Impacts, 16(2), 313-323. External link
Ndong, M., Bird, D., Nguyen-Quang, T., de Boutray, M.-L., Zamyadi, A., Vincon-Leite, B., Lemaire, B. J., Prévost, M., & Dorner, S. (2014). Estimating the risk of cyanobacterial occurrence using an index integrating meteorological factors: Application to drinking water production. Water Research, 56, 98-108. External link
Zamyadi, A., Dorner, S., Ndong, M., Ellis, D., Bolduc, A., Bastien, C., & Prévost, M. (2013). Low-risk cyanobacterial bloom sources: Cell accumulation within full-scale treatment plants. Journal - American Water Works Association, 105(11), E651-E663. External link