![]() | Monter d'un niveau |
Ce graphique trace les liens entre tous les collaborateurs des publications de {} figurant sur cette page.
Chaque lien représente une collaboration sur la même publication. L'épaisseur du lien représente le nombre de collaborations.
Utilisez la molette de la souris ou les gestes de défilement pour zoomer à l'intérieur du graphique.
Vous pouvez cliquer sur les noeuds et les liens pour les mettre en surbrillance et déplacer les noeuds en les glissant.
Enfoncez la touche "Ctrl" ou la touche "⌘" en cliquant sur les noeuds pour ouvrir la liste des publications de cette personne.
Un nuage de mots est une représentation visuelle des mots les plus fréquemment utilisés dans un texte ou un ensemble de textes. Les mots apparaissent dans différentes tailles, la taille de chaque mot étant proportionnelle à sa fréquence d'apparition dans le texte. Plus un mot est utilisé fréquemment, plus il apparaît en grand dans le nuage de mots. Cette technique permet de visualiser rapidement les thèmes et les concepts les plus importants d'un texte.
Dans le contexte de cette page, le nuage de mots a été généré à partir des publications de l'auteur {}. Les mots présents dans ce nuage proviennent des titres, résumés et mots-clés des articles et travaux de recherche de cet auteur. En analysant ce nuage de mots, vous pouvez obtenir un aperçu des sujets et des domaines de recherche les plus récurrents et significatifs dans les travaux de cet auteur.Le nuage de mots est un outil utile pour identifier les tendances et les thèmes principaux dans un corpus de textes, facilitant ainsi la compréhension et l'analyse des contenus de manière visuelle et intuitive.
Madsen, A., Reddy, S., & Anbil Parthipan, S. C. (2023). Post-hoc Interpretability for Neural NLP: A Survey. ACM Computing Surveys, 55(8), 1-42. Lien externe
Madsen, A., Anbil Parthipan, S. C., & Reddy, S. (août 2024). Are self-explanations from Large Language Models faithful? [Communication écrite]. 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024), Hybrid, Bangkok, Thailand. Lien externe
Madsen, A., Reddy, S., & Anbil Parthipan, S. C. (juillet 2024). Faithfulness Measurable Masked Language Models [Communication écrite]. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria. Lien externe
Madsen, A., Meade, N., Adlakha, V., & Reddy, S. (décembre 2022). Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Tokens and Retraining [Communication écrite]. Findings of the Association for Computational Linguistics (EMNLP 2022), Abu Dhabi, United Arab Emirates. Lien externe
Madsen, A. (2024). New Faithfulness-Centric Interpretability Paradigms for Natural Language Processing [Thèse de doctorat, Polytechnique Montréal]. Disponible