<  Back to the Polytechnique Montréal portal

Items where Author is "Mélot, Hadrien"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Jump to: A | B | D | H
Number of items: 18.

A

Absil, R., Camby, E., Hertz, A., & Mélot, H. (2016). A sharp lower bound on the number of non-equivalent colorings of graphs of order n and maximum degree n - 3. Discrete Applied Mathematics, 234, 3-11. External link

Absil, R., Camby, E., Hertz, A., & Mélot, H. (2015). A sharp lower bound on the number of non-equivalent colorings of graphs of order n and maximum degree n-3. (Technical Report n° G-2015-04). External link

B

Bonte, S., Devillez, G., Dusollier, V., Hertz, A., & Mélot, H. (2025). Extremal chemical graphs of maximum degree at most 3 for 33 degree-based topological indices. (Technical Report n° G-2025-05). External link

D

Devillez, G., Hertz, A., Mélot, H., & Hauweele, P. (2019). Minimum eccentric connectivity index for graphs with fixed order and fixed number of pendant vertices. Yugoslav Journal of Operations Research, 29(2), 193-202. External link

Devillez, G., Hertz, A., Mélot, H., & Hauweele, P. (2018). Minimum eccentric connectivity index for graphs with fixed order and fixed number of pending vertices. (Technical Report n° G-2018-69). External link

H

Hertz, A., Bonte, S., Devillez, G., Dusollier, V., Mélot, H., & Schindl, D. (2024). Extremal chemical graphs for the arithmetic-geometric index. (Technical Report n° G-2024-27). External link

Hertz, A., Bonte, S., Devillez, G., Dusollier, V., Mélot, H., & Schindl, D. (2024). Extremal Chemical Graphs for the Arithmetic-Geometric Index. match Communications in Mathematical and in Computer Chemistry, 93(3), 791-818. External link

Hertz, A., Bonte, S., Devillez, G., & Mélot, H. (2024). The average size of maximal matchings in graphs. Journal of Combinatorial Optimization, 47(3), 46 (34 pages). External link

Hertz, A., Mélot, H., Bonte, S., & Devillez, G. (2023). Lower bounds and properties for the average number of colors in the non-equivalent colorings of a graph. Discrete Applied Mathematics, 335, 69-81. External link

Hertz, A., Mélot, H., Bonte, S., Devillez, G., & Hauweele, P. (2023). Upper bounds on the average number of colors in the non-equivalent colorings of a graph. Graphs and Combinatorics, 39(3), 49 (22 pages). External link

Hertz, A., Bonte, S., Devillez, G., & Mélot, H. (2022). The average size of maximal matchings in graphs. (Technical Report n° G-2022-13). External link

Hertz, A., Mélot, H., Bonte, S., Devillez, G., & Hauweele, P. (2021). Upper bounds on the average number of colors in the non-equivalent colorings of a graph. (Technical Report n° G-2021-28). External link

Hertz, A., Mélot, H., Bonte, S., & Devillez, G. (2021). Lower bounds and properties for the average number of colors in the non-equivalent colorings of a graph. (Technical Report n° G-2021-25). External link

Hertz, A., Hertz, A., & Mélot, H. (2021). Using graph theory to derive inequalities for the Bell numbers. (Technical Report n° G-2021-06). External link

Hertz, A., Hertz, A., & Mélot, H. (2021). Using Graph Theory to Derive Inequalities for the Bell Numbers. Journal of Integer Sequences, 24(10), 21.10.6 (19 pages). External link

Hauweele, P., Hertz, A., Mélot, H., Ries, B., & Devillez, G. (2018). Maximum eccentric connectivity index for graphs with given diameter. (Technical Report n° G-2018-66). External link

Hertz, A., & Mélot, H. (2016). Counting the number of non-equivalent vertex colorings of a graph. Discrete Applied Mathematics, 203, 62-71. External link

Hertz, A., & Mélot, H. (2013). Counting the Number of Non-Equivalent Vertex Colorings of a Graph. (Technical Report n° G-2013-82). External link

List generated on: Sun Jul 13 06:36:07 2025 EDT