Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
Wang, X., Yeung, K., Cheung, J. P. Y., Lau, J. Y.-N., Qi, W., Cheung, K. M.-C., & Aubin, C.-É. (2020). A novel scoliosis instrumentation using special superelastic nickel-titanium shape memory rods: a biomechanical analysis using a calibrated computer model and data from a clinical trial. Spine Deformity, 8(3), 369-379. External link
Wang, X., Yeung, K., Cheung, J. P. Y., Lau, J. Y.-N., Qi, W., Cheung, K. M.-C., & Aubin, C.-É. (2019, July). A Novel Superelastic Shape-Memory Rod Provides More Options for Optimal AIS Correction: Biomechanical Analysis of A Clinical Trial with 5-Year Follow-Up [Paper]. 26th International Meeting on Advanced Spine Techniques (IMAST 2019), Amsterdam, The Netherlands. Unavailable
Wang, X., Yeung, K., Cheung, J. P. Y., Lau, J. Y.-N., Qi, W., Cheung, K. M.-C., & Aubin, C.-É. (2018, June). A novel scoliosis instrumentation using special superelastic nickel-titanium shape memory alloy spinal rods can result in equivalent correction as conventional rods but with less stress at bone-implant interface: a biomechanical evaluation through simulations [Abstract]. International Research Society of Spinal Deformities (IRSSD) 2018 Meeting, Utrecht, Netherlands. Published in Scoliosis and Spinal Disorders, 13(8). External link