![]() | Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
A word cloud is a visual representation of the most frequently used words in a text or a set of texts. The words appear in different sizes, with the size of each word being proportional to its frequency of occurrence in the text. The more frequently a word is used, the larger it appears in the word cloud. This technique allows for a quick visualization of the most important themes and concepts in a text.
In the context of this page, the word cloud was generated from the publications of the author {}. The words in this cloud come from the titles, abstracts, and keywords of the author's articles and research papers. By analyzing this word cloud, you can get an overview of the most recurring and significant topics and research areas in the author's work.
The word cloud is a useful tool for identifying trends and main themes in a corpus of texts, thus facilitating the understanding and analysis of content in a visual and intuitive way.
He, L., Trépanier, M., & Agard, B. (2021). Space-time classification of public transit smart card users' activity locations from smart card data. Public Transport, 13(3), 579-595. External link
He, L., Agard, B., & Trépanier, M. (2020). A classification of public transit users with smart card data based on time series distance metrics and a hierarchical clustering method. Transportmetrica A: Transport Science, 16(1), 56-75. External link
He, L. (2019). Méthodes spatio-temporelles de fouilles des données de cartes à puce en transport urbain [Ph.D. thesis, Polytechnique Montréal]. Available
He, L., Trépanier, M., & Agard, B. (2019). Sampling method applied to the clustering of temporal patterns of public transit smart card users. (Technical Report n° CIRRELT-2019-30). External link
He, L., Agard, B., & Trépanier, M. (2017). Comparing time series segmentation methods for the analysis of transportation patterns with smart card data. (Technical Report n° CIRRELT-2017-28). External link
He, L., Trépanier, M., & Agard, B. (2017, May). Evaluating the change on users' spatial patterns using dynamic time warping distance applied to smart card data [Paper]. 3rd International Workshop and Symposium Research and Applications on the Use of Passive Data fom Public Transport, Santiago, Chili. Unavailable
He, L., Trépanier, M., & Agard, B. (2017, January). Evaluating the impacts on users' temporal patterns of a bus-rapid transit using cross correlation distance and sampled hierarchical clustering applied to smart card data [Paper]. 96th Annual Meeting of the Transportation Research Board (TRB 2017), Washington, DC. External link
He, L., Agard, B., & Trépanier, M. (2017, May). Évaluation des impacts de l'implantation d'un service de bus rapide à partir de données de cartes à puce [Paper]. 12e Congrès international de génie industriel (GI 2017), Compiègne, France. External link
He, L., & Trépanier, M. (2015). Estimating the Destination of Unlinked Trips in Transit Smart Card Fare Data. Transportation Research Record, 2535(1), 97-104. External link
He, L., Nassir, N., Trépanier, M., & Hickman, M. (2015, July). Validating and calibrating a destination estimation algorithm for public transport smart card fare collection systems [Paper]. 13th Conference on Advanced Systems in Public Transport, Rotterdam, Pays-Bas. Unavailable
He, L. (2014). Contributions à l'amélioration d'un algorithme d'estimation des destinations des déplacements unitaires dérivées des validations d'un système de perception par carte à puce [Master's thesis, École Polytechnique de Montréal]. Available
Murray, P.-W., He, L., Agard, B., & Barajas, M.-A. (2015, October). Segmentation de données de livraison pour la prévision de la demande des clients [Paper]. 11e Congrès international de génie industriel (CIGI 2015), Québec, Canada. External link