![]() | Monter d'un niveau |
Ce graphique trace les liens entre tous les collaborateurs des publications de {} figurant sur cette page.
Chaque lien représente une collaboration sur la même publication. L'épaisseur du lien représente le nombre de collaborations.
Utilisez la molette de la souris ou les gestes de défilement pour zoomer à l'intérieur du graphique.
Vous pouvez cliquer sur les noeuds et les liens pour les mettre en surbrillance et déplacer les noeuds en les glissant.
Enfoncez la touche "Ctrl" ou la touche "⌘" en cliquant sur les noeuds pour ouvrir la liste des publications de cette personne.
Un nuage de mots est une représentation visuelle des mots les plus fréquemment utilisés dans un texte ou un ensemble de textes. Les mots apparaissent dans différentes tailles, la taille de chaque mot étant proportionnelle à sa fréquence d'apparition dans le texte. Plus un mot est utilisé fréquemment, plus il apparaît en grand dans le nuage de mots. Cette technique permet de visualiser rapidement les thèmes et les concepts les plus importants d'un texte.
Dans le contexte de cette page, le nuage de mots a été généré à partir des publications de l'auteur {}. Les mots présents dans ce nuage proviennent des titres, résumés et mots-clés des articles et travaux de recherche de cet auteur. En analysant ce nuage de mots, vous pouvez obtenir un aperçu des sujets et des domaines de recherche les plus récurrents et significatifs dans les travaux de cet auteur.Le nuage de mots est un outil utile pour identifier les tendances et les thèmes principaux dans un corpus de textes, facilitant ainsi la compréhension et l'analyse des contenus de manière visuelle et intuitive.
Grogan, S. (2023). A Data-Driven Approach to Locating and Routing Unmanned Aerial Vehicles for Disaster Area Reconnaissance [Thèse de doctorat, Polytechnique Montréal]. Disponible
Grogan, S., Gamache, M., & Pellerin, R. (2023). Using historical data to dynamically route post-disaster assessment unmanned aerial vehicles in the context of responding to tornadoes. Applied Sciences, 13(7), 4178. Lien externe
Grogan, S., Perrier, N., Gamache, M., & Pellerin, R. (2022). Location of disaster assessment UAVs using historical tornado data. Geomatics, Natural Hazards and Risk, 13(1), 2385-2404. Lien externe
Garnett, H. A., & Grogan, S. (2021). I Came, I Saw, I Voted: Distance to Polling Locations and Voter Turnout in Ontario, Canada. Canadian Journal of Political Science, 54(2), 316-334. Lien externe
Grogan, S., Pellerin, R., & Gamache, M. (2021). Using tornado-related weather data to route unmanned aerial vehicles to locate damage and victims. OR Spectrum, 43(4), 905-939. Lien externe
Grogan, S., Gamache, M., & Pellerin, R. (juin 2019). Dynamically Routing UAVs in the Aftermath of a Severe Tornado [Communication écrite]. PROLOG 2019, Metz, France. Non disponible
Grogan, S., Gamache, M., & Pellerin, R. (juin 2018). The use of unmanned aerial vehicles and drones in search and rescue operations - a survey [Communication écrite]. PROLOG 2018, Hull, UK. Non disponible