![]() | Monter d'un niveau |
Ce graphique trace les liens entre tous les collaborateurs des publications de {} figurant sur cette page.
Chaque lien représente une collaboration sur la même publication. L'épaisseur du lien représente le nombre de collaborations.
Utilisez la molette de la souris ou les gestes de défilement pour zoomer à l'intérieur du graphique.
Vous pouvez cliquer sur les noeuds et les liens pour les mettre en surbrillance et déplacer les noeuds en les glissant.
Enfoncez la touche "Ctrl" ou la touche "⌘" en cliquant sur les noeuds pour ouvrir la liste des publications de cette personne.
Un nuage de mots est une représentation visuelle des mots les plus fréquemment utilisés dans un texte ou un ensemble de textes. Les mots apparaissent dans différentes tailles, la taille de chaque mot étant proportionnelle à sa fréquence d'apparition dans le texte. Plus un mot est utilisé fréquemment, plus il apparaît en grand dans le nuage de mots. Cette technique permet de visualiser rapidement les thèmes et les concepts les plus importants d'un texte.
Dans le contexte de cette page, le nuage de mots a été généré à partir des publications de l'auteur {}. Les mots présents dans ce nuage proviennent des titres, résumés et mots-clés des articles et travaux de recherche de cet auteur. En analysant ce nuage de mots, vous pouvez obtenir un aperçu des sujets et des domaines de recherche les plus récurrents et significatifs dans les travaux de cet auteur.Le nuage de mots est un outil utile pour identifier les tendances et les thèmes principaux dans un corpus de textes, facilitant ainsi la compréhension et l'analyse des contenus de manière visuelle et intuitive.
Akhtar, F., Belal Bin Heyat, M., Sultana, A., Parveen, S., Muhammad Zeeshan, H., Fathima Merlin, S., Shen, B., Pomary, D., Li, J., & Sawan, M. (2024). Medical intelligence for anxiety research: Insights from genetics, hormones, implant science, and smart devices with future strategies [Commentaire ou lettre]. Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, 14(6), 35 pages. Lien externe
Belal Bin Heyat, M., Akhtar, F., Munir, F., Sultana, A., Y. Muaad, A., Gul, I., Sawan, M., Asghar, W., Muhammad Zeeshan Iqbal, S., Amin Baig, A., de la Torre Díez, I., & Wu, K. (2024). Unravelling the complexities of depression with medical intelligence: exploring the interplay of genetics, hormones, and brain function. Complex & Intelligent Systems, 10(4), 5883-5915. Lien externe
Shahid Iqbal, M., Belal Bin Heyat, M., Parveen, S., Ammar Bin Hayat, M., Roshanzamir, M., Alizadehsani, R., Akhtar, F., Sayeed, E., Hussain, S., S. Hussein, H., & Sawan, M. (2024). Progress and trends in neurological disorders research based on deep learning [Commentaire ou lettre]. Computerized Medical Imaging and Graphics, 116, 102400 (24 pages). Lien externe
Waheed, Z., Gui, J., Belal Bin Heyat, M., Parveen, S., Ammar Bin Hayat, M., Shahid Iqbal, M., Aya, Z., Khan Nawabi, A., & Sawan, M. (2024). A Novel Lightweight Deep Learning Based Approaches for the Automatic Diagnosis of Gastrointestinal Disease using Image Processing and Knowledge Distillation Techniques. Computer Methods and Programs in Biomedicine, 260, 108579 (17 pages). Lien externe