<  Retour au portail Polytechnique Montréal

A deep learning approach to urban street functionality prediction based on centrality measures and stacked denoising autoencoder

Fatemeh Noori, Hamid Kamangir, Scott A. King, Alaa Sheta, Mohammad Pashaei et Abbas SheikhMohammadZadeh

Article de revue (2020)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (4MB)
Afficher le résumé
Cacher le résumé

Abstract

In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban streets to provide stakeholders with a group of street guidelines for possible new rehabilitation such as sidewalks, curbs, and setbacks. Transportation research always considers street networks as a connection between different urban areas. The street functionality classification defines the role of each element of the urban street network (USN). Some potential factors such as land use mix, accessible service, design goal, and administrators’ policies can affect the movement pattern of urban travelers. In this study, nine centrality measures are used to classify the urban roads in four cities evaluating the structural importance of street segments. In our work, a Stacked Denoising Autoencoder (SDAE) predicts a street’s functionality, then logistic regression is used as a classifier. Our proposed classifier can differentiate between four different classes adopted from the U.S. Department of Transportation (USDT): principal arterial road, minor arterial road, collector road, and local road. The SDAE-based model showed that regular grid configurations with repeated patterns are more influential in forming the functionality of road networks compared to those with less regularity in their spatial structure.

Mots clés

urban transportation network; street functionality classification; stacked denoising autoencoder; deep learning; centrality measures; machine learning

Sujet(s): 1000 Génie civil > 1000 Génie civil
1000 Génie civil > 1003 Génie du transport
Département: Département des génies civil, géologique et des mines
URL de PolyPublie: https://publications.polymtl.ca/9390/
Titre de la revue: ISPRS International Journal of Geo-Information (vol. 9, no 7)
Maison d'édition: MDPI
DOI: 10.3390/ijgi9070456
URL officielle: https://doi.org/10.3390/ijgi9070456
Date du dépôt: 16 août 2023 12:27
Dernière modification: 28 sept. 2024 08:18
Citer en APA 7: Noori, F., Kamangir, H., King, S. A., Sheta, A., Pashaei, M., & SheikhMohammadZadeh, A. (2020). A deep learning approach to urban street functionality prediction based on centrality measures and stacked denoising autoencoder. ISPRS International Journal of Geo-Information, 9(7), 23 pages. https://doi.org/10.3390/ijgi9070456

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document