Iago Cupeiro Figueroa, Massimo Cimmino et Lieve Helsen
Article de revue (2020)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (1MB) |
Abstract
Model Predictive Control (MPC) predictive’s nature makes it attractive for controlling high-capacity structures such as thermally activated building systems (TABS). Using weather predictions in the order of days, the system is able to react in advance to changes in the building heating and cooling needs. However, this prediction horizon window may be sub-optimal when hybrid geothermal systems are used, since the ground dynamics are in the order of months and even years. This paper proposes a methodology that includes a shadow-cost in the objective function to take into account the long-term effects that appear in the borefield. The shadow-cost is computed for a given long-term horizon that is discretized over time using predictions of the building heating and cooling needs. The methodology is applied to a case with only heating and active regeneration of the ground thermal balance. Results show that the formulation with the shadow cost is able to optimally use the active regeneration, reducing the overall operational costs at the expenses of an increased computational time. The effects of the shadow cost long-term horizon and the predictions accuracy are also investigated.
Mots clés
hybrid geothermal systems; model predictive control; control-oriented modeling; long-term predictions; shadow cost
Sujet(s): | 2100 Génie mécanique > 2100 Génie mécanique |
---|---|
Département: | Département de génie mécanique |
Organismes subventionnaires: | EU within the H2020-EE-2016-RIA-IA programme, Hybrid Low Grade Thermal Energy Systems-Hybrid MPC GEOTABS, InnoEnergy PhD School Programme, European Institute of Technology (EIT) |
Numéro de subvention: | 723649-MPC |
URL de PolyPublie: | https://publications.polymtl.ca/9383/ |
Titre de la revue: | Energies (vol. 13, no 23) |
Maison d'édition: | MDPI |
DOI: | 10.3390/en13236203 |
URL officielle: | https://doi.org/10.3390/en13236203 |
Date du dépôt: | 16 août 2023 13:21 |
Dernière modification: | 27 sept. 2024 13:02 |
Citer en APA 7: | Cupeiro Figueroa, I., Cimmino, M., & Helsen, L. (2020). A methodology for long-term model predictive control of hybrid geothermal systems: the shadow-cost formulation. Energies, 13(23), 27 pages. https://doi.org/10.3390/en13236203 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions