Daniela Vieira, Francis McEachern, Romina Filippelli, Evan Dimentberg, Edward J. Harvey et Géraldine Merle
Article de revue (2020)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (5MB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (1MB) |
Abstract
A variety of brain disorders such as neural injury, brain dysfunction, vascular malformation, and neurodegenerative diseases are associated with abnormal levels of oxygen. Current methods to directly monitor tissue oxygenation in the brain are expensive and invasive, suffering from a lack of accuracy. Electrochemical detection has been used as an invasiveness and cost-effectiveness method, minimizing pain, discomfort, and injury to the patient. In this work, we developed a minimally invasive needle-sensor with a high surface area to monitor O₂ levels in the brain using acupuncture needles. The approach was to directly etch the iron from stainless steel acupuncture needles via a controlled pitting corrosion process, obtaining a high microporous surface area. In order to increase the conductivity and selectivity, we designed and applied for the first time a low-cost coating process using non-toxic chemicals to deposit high surface area carbon nanoparticle, catalytically active laccase, and biocompatible polypyrrole. The physicochemical properties of the materials were characterized as well as their efficacy and viability as probes for the electrochemical detection of PO₂. Our modified needles exhibited efficient electrocatalysis and high selectivity toward O₂, with excellent repeatability. We well engineered a small diagnostic tool to monitor PO₂, minimally invasive, able to monitor real-time O₂ in vivo complex environments.
Mots clés
oxygen biosensor; spin dipping; laccase; acupuncture needles; nanomaterials
Sujet(s): |
1800 Génie chimique > 1800 Génie chimique 1800 Génie chimique > 1802 Génie biochimique 1900 Génie biomédical > 1900 Génie biomédical 1900 Génie biomédical > 1901 Technologie biomédicale |
---|---|
Département: | Département de génie chimique |
Organismes subventionnaires: | CRSNG/NSERC - Discovery Program, Fonds de Recherche du Québec–Santé |
URL de PolyPublie: | https://publications.polymtl.ca/9367/ |
Titre de la revue: | Biosensors (vol. 10, no 11) |
Maison d'édition: | MDPI |
DOI: | 10.3390/bios10110157 |
URL officielle: | https://doi.org/10.3390/bios10110157 |
Date du dépôt: | 09 févr. 2023 16:18 |
Dernière modification: | 21 déc. 2024 08:10 |
Citer en APA 7: | Vieira, D., McEachern, F., Filippelli, R., Dimentberg, E., Harvey, E. J., & Merle, G. (2020). Microelectrochemical smart needle for real time minimally invasive oximetry. Biosensors, 10(11), 157 (11 pages). https://doi.org/10.3390/bios10110157 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions