Xiaoting Li, Christian Genest et Jonathan Jalbert
Article de revue (2021)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (523kB) |
Abstract
A self-exciting marked point process approach is proposed to model clustered low-flow events. It combines a self-exciting ground process designed to capture the temporal clustering behavior of extreme values and an extended Generalized Pareto mark distribution for the exceedances over a subasymptotic threshold. The model takes into account the dependence between the magnitude and occurrence time of exceedances and allows for closed-form inference on tail probabilities and large quantiles. It is used to analyze daily water levels from the Rivière des Mille Îles (Québec, Canada) and to characterize drought patterns in the Montréal area. The model is useful to generate short-term probability forecasts and to estimate the return period of major droughts. This information on the drought events is critical to water resource professionals in planning, designing, building, and managing more efficient water resource systems to hedge against the water shortage in case of extreme droughts.
Mots clés
drought, extended generalized Pareto, extreme-value inference, point process
Sujet(s): |
1600 Génie industriel > 1600 Génie industriel 1600 Génie industriel > 1603 Logistique |
---|---|
Département: | Département de mathématiques et de génie industriel |
Organismes subventionnaires: | Canada Research Chairs, CRSNG/NSERC, Trottier Institute for Science and Public Policy |
URL de PolyPublie: | https://publications.polymtl.ca/9248/ |
Titre de la revue: | Environmetrics (vol. 32, no 8) |
Maison d'édition: | Wiley |
DOI: | 10.1002/env.2697 |
URL officielle: | https://doi.org/10.1002/env.2697 |
Date du dépôt: | 20 janv. 2022 16:33 |
Dernière modification: | 27 sept. 2024 11:14 |
Citer en APA 7: | Li, X., Genest, C., & Jalbert, J. (2021). A self‐exciting marked point process model for drought analysis. Environmetrics, 32(8), 1-24. https://doi.org/10.1002/env.2697 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions