Ana Iglesias‐Juez, Gian Luca Chiarello, Gregory Scott Patience et M. Olga Guerrero‐Pérez
Article de revue (2022)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (1MB) |
Abstract
Although X-ray absorption spectroscopy (XAS) was conceived in the early 20th century, it took 60 years after the advent of synchrotrons for researchers to exploit its tremendous potential. Counterintuitively, researchers are now developing bench type polychromatic X-ray sources that are less brilliant to measure catalyst stability and work with toxic substances. XAS measures the absorption spectra of electrons that X-rays eject from the tightly bound core electrons to the continuum. The spectrum from 10 to 150 eV (kinetic energy of the photoelectrons) above the chemical potential—binding energy of core electrons—identifies oxidation state and band occupancy (X-ray absorption near edge structure, XANES), while higher energies in the spectrum relate to local atomic structure like coordination number and distance, Debye-Waller factor, and inner potential correction (extended X-ray absorption fine structure, EXAFS). Combining XAS with complementary spectroscopic techniques like Raman, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) elucidates the nature of the chemical bonds at the catalyst surface to better understand reaction mechanisms and intermediates. Because synchrotrons continue to be the light source of choice for most researchers, the number of articles Web of Science indexes per year has grown from 1000 in 1991 to 1700 in 2020. Material scientists and physical chemists publish an order of magnitude articles more than chemical engineers. Based on a bibliometric analysis, the research comprises five clusters centred around: electronic and optical properties, oxidation and hydrogenation catalysis, complementary analytical techniques like FTIR, nanoparticles and electrocatalysis, and iron, metals, and complexes.
Mots clés
EXAFS, operando, synchrotron, XANES, XAS
Sujet(s): | 1800 Génie chimique > 1800 Génie chimique |
---|---|
Département: | Département de génie chimique |
Organismes subventionnaires: | Erasmus+ KA107, Universidad de Malaga/CBUA, Canada Research Chairs program |
Numéro de subvention: | 2018-1-ES01-KA107-049563, 950-231476 |
URL de PolyPublie: | https://publications.polymtl.ca/9247/ |
Titre de la revue: | The Canadian Journal of Chemical Engineering (vol. 100, no 1) |
Maison d'édition: | Wiley |
DOI: | 10.1002/cjce.24291 |
URL officielle: | https://doi.org/10.1002/cjce.24291 |
Date du dépôt: | 20 janv. 2022 16:13 |
Dernière modification: | 28 sept. 2024 06:50 |
Citer en APA 7: | Iglesias‐Juez, A., Chiarello, G. L., Patience, G. S., & Guerrero‐Pérez, M. O. (2022). Experimental methods in chemical engineering: X ‐ray absorption spectroscopy— XAS , XANES , EXAFS. The Canadian Journal of Chemical Engineering, 100(1), 1-20. https://doi.org/10.1002/cjce.24291 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions