Soline Corre, Meire Ellen Gorete Ribeiro Domingos, Daniel Flórez-Orrego, Gabriel Magnaval, Manuele Margni et François Maréchal
Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (6MB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (1MB) |
Abstract
The disposal of sewage sludge poses significant challenges due to storage difficulties and the presence of pollutants and pathogens. Conventional treatment methods, such as incineration and anaerobic digestion (AD), are compared to advanced technologies like hydrothermal gasification (HTG) with syngas upgrading for methane production. Various indicators — i.e. environmental impacts, exergy efficiency, capital expenditures, and operational expenses — are assessed to evaluate these pathways. The scope of the life cycle assessment (LCA) accounts for the waste recovery, the treatement infrastructure, and material and energy flows. It additionally account for the substitution of valorized products. For instance, the methane produced is assumed to replace fossil methane with a substitution rate ranging from 100% (entire replacement of fossil methane) to 0%, considering either no substitution or future decarbonized energy systems. As a result, HTG achieves an exergy efficiency as low as 10.2 %. Yet, carbon management strategies, such as co-electrolysis (co-SOEC), can improve the exergy efficiency up to a value of 62.2 %. The most favourable routes in terms of GHG emissions are those mineralizing CO2 from sludge gasification (−1,100 kg CO2-eq/FU) or maximizing sludge-to-methane conversion (e.g., HTG with co-SOEC, −790 kg CO2-eq/FU). However, this benefit reverses under a 0 % substitution scenario (+770 kg CO2-eq/FU). In contrast, AD-based routes with lower energy demand show impacts between − 328 and + 70 kg CO2-eq/FU, also being more competitive in terms of costs. Beyond GHG emissions, trade-offs emerge across other impact categories, notably water scarcity, ecosystem quality, and fossil and nuclear energy use, particularly for routes involving CO2 mineralization and co-SOEC due to their high energy demand.
Mots clés
| Matériel d'accompagnement: | |
|---|---|
| Département: | Département de mathématiques et de génie industriel |
| Centre de recherche: | CIRAIG - Centre international de référence sur le cycle de vie des produits, procédés et services |
| URL de PolyPublie: | https://publications.polymtl.ca/70182/ |
| Titre de la revue: | Energy Conversion and Management (vol. 341) |
| Maison d'édition: | Elsevier BV |
| DOI: | 10.1016/j.enconman.2025.120015 |
| Autres DOI associés à ce document: | 10.5281/zenodo.15321760 |
| URL officielle: | https://doi.org/10.1016/j.enconman.2025.120015 |
| Date du dépôt: | 21 nov. 2025 14:46 |
| Dernière modification: | 05 déc. 2025 06:51 |
| Citer en APA 7: | Corre, S., Ellen Gorete Ribeiro Domingos, M., Flórez-Orrego, D., Magnaval, G., Margni, M., & Maréchal, F. (2025). Life cycle assessment and techno-economic comparison of methane production routes from sewage sludge: Incineration vs. Hydrothermal Gasification and Anaerobic Digestion. Energy Conversion and Management, 341, 120015-120015. https://doi.org/10.1016/j.enconman.2025.120015 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
