Nicolas Dalbec-Constant, Guillaume Thekkadath, Duncan England, Benjamin Sussman, Thomas Gerrits et Nicolás Quesada
Article de revue (2025)
Un lien externe est disponible pour ce documentAbstract
We compare methods for signal classification applied to voltage traces from transition edge sensors (TES) which are photon-number resolving detectors fundamental for accessing quantum advantages in information processing, communication, and metrology. We quantify the effect of numerical analysis on the distinction of such signals. Furthermore, we explore dimensionality reduction techniques to create interpretable and precise photon-number embeddings. We demonstrate that the preservation of local data structures of some nonlinear methods is an accurate way to achieve unsupervised classification of TES traces. We do so by considering a confidence metric that quantifies the overlap of the photon-number clusters inside a latent space. Furthermore, we demonstrate that for our dataset previous methods such as the signal’s area and principal component analysis can resolve up to 16 photons with confidence above 90% whereas nonlinear techniques can resolve up to 21 photons with the same confidence threshold. In addition, we showcase implementations of neural networks to leverage information within local structures, aiming to increase confidence in assigning photon numbers. Finally, we demonstrate the advantage of some nonlinear methods to detect and remove outlier signals.
Mots clés
| Matériel d'accompagnement: | |
|---|---|
| Département: | Département de génie physique |
| Organismes subventionnaires: | NSERC |
| URL de PolyPublie: | https://publications.polymtl.ca/68398/ |
| Titre de la revue: | Physical Review Applied (vol. 24, no 3) |
| Maison d'édition: | American Physical Society |
| DOI: | 10.1103/c11p-d13h |
| URL officielle: | https://doi.org/10.1103/c11p-d13h |
| Date du dépôt: | 08 sept. 2025 08:25 |
| Dernière modification: | 29 janv. 2026 10:50 |
| Citer en APA 7: | Dalbec-Constant, N., Thekkadath, G., England, D., Sussman, B., Gerrits, T., & Quesada, N. (2025). Accurate unsupervised photon counting from transition-edge-sensor signals. Physical Review Applied, 24(3), 034018 (18 pages). https://doi.org/10.1103/c11p-d13h |
|---|---|
Statistiques
Dimensions
