Safwen Naimi, Arij Said, Wassim Bouachir et Guillaume-Alexandre Bilodeau
Communication écrite (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (4MB) |
Abstract
We present InceptoFormer, a multi-signal neural framework designed for Parkinson’s Disease (PD) severity evaluation via gait dynamics analysis. Our architecture introduces a 1D adaptation of the Inception model, which we refer to as Inception1D, along with a Transformer-based framework to stage PD severity according to the Hoehn and Yahr (H&Y) scale. The Inception1D component captures multi-scale temporal features by employing parallel 1D convolutional filters with varying kernel sizes, thereby extracting features across multiple temporal scales. The transformer component efficiently models long-range dependencies within gait sequences, providing a comprehensive understanding of both local and global patterns. To address the issue of class imbalance in PD severity staging, we propose a data structuring and preprocessing strategy based on oversampling to enhance the representation of underrepresented severity levels.
The overall design enables to capture fine-grained temporal variations and global dynamics in gait signal, significantly improving classification performance for PD severity evaluation.
Through extensive experimentation, InceptoFormer achieves an accuracy of 96.6%, outperforming existing state-of-the-art methods in PD severity assessment.
Mots clés
| Matériel d'accompagnement: | |
|---|---|
| Département: | Département de génie informatique et génie logiciel |
| URL de PolyPublie: | https://publications.polymtl.ca/66395/ |
| Nom de la conférence: | 38th Canadian Conference on Artificial Intelligence (Canadian AI 2025) |
| Lieu de la conférence: | Calgary, Alberta, Canada |
| Date(s) de la conférence: | 2025-05-26 - 2025-05-29 |
| Maison d'édition: | Caiac |
| DOI: | 10.21428/594757db.655708c2 |
| URL officielle: | https://caiac.pubpub.org/pub/x1ozcnb4/release/1 |
| Date du dépôt: | 30 juin 2025 16:34 |
| Dernière modification: | 14 févr. 2026 17:53 |
| Citer en APA 7: | Naimi, S., Said, A., Bouachir, W., & Bilodeau, G.-A. (mai 2025). InceptoFormer: a multi-signal neural framework for Parkinson's disease severity evaluation from gait [Communication écrite]. 38th Canadian Conference on Artificial Intelligence (Canadian AI 2025), Calgary, Alberta, Canada (11 pages). https://caiac.pubpub.org/pub/x1ozcnb4/release/1 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
