<  Retour au portail Polytechnique Montréal

InceptoFormer: a multi-signal neural framework for Parkinson's disease severity evaluation from gait

Safwen Naimi, Arij Said, Wassim Bouachir et Guillaume-Alexandre Bilodeau

Communication écrite (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (4MB)
Afficher le résumé
Cacher le résumé

Abstract

We present InceptoFormer, a multi-signal neural framework designed for Parkinson’s Disease (PD) severity evaluation via gait dynamics analysis. Our architecture introduces a 1D adaptation of the Inception model, which we refer to as Inception1D, along with a Transformer-based framework to stage PD severity according to the Hoehn and Yahr (H&Y) scale. The Inception1D component captures multi-scale temporal features by employing parallel 1D convolutional filters with varying kernel sizes, thereby extracting features across multiple temporal scales. The transformer component efficiently models long-range dependencies within gait sequences, providing a comprehensive understanding of both local and global patterns. To address the issue of class imbalance in PD severity staging, we propose a data structuring and preprocessing strategy based on oversampling to enhance the representation of underrepresented severity levels.

The overall design enables to capture fine-grained temporal variations and global dynamics in gait signal, significantly improving classification performance for PD severity evaluation.

Through extensive experimentation, InceptoFormer achieves an accuracy of 96.6%, outperforming existing state-of-the-art methods in PD severity assessment.

Mots clés

Matériel d'accompagnement:
Département: Département de génie informatique et génie logiciel
URL de PolyPublie: https://publications.polymtl.ca/66395/
Nom de la conférence: 38th Canadian Conference on Artificial Intelligence (Canadian AI 2025)
Lieu de la conférence: Calgary, Alberta, Canada
Date(s) de la conférence: 2025-05-26 - 2025-05-29
Maison d'édition: Caiac
DOI: 10.21428/594757db.655708c2
URL officielle: https://caiac.pubpub.org/pub/x1ozcnb4/release/1
Date du dépôt: 30 juin 2025 16:34
Dernière modification: 14 févr. 2026 17:53
Citer en APA 7: Naimi, S., Said, A., Bouachir, W., & Bilodeau, G.-A. (mai 2025). InceptoFormer: a multi-signal neural framework for Parkinson's disease severity evaluation from gait [Communication écrite]. 38th Canadian Conference on Artificial Intelligence (Canadian AI 2025), Calgary, Alberta, Canada (11 pages). https://caiac.pubpub.org/pub/x1ozcnb4/release/1

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document