Matej Gazda, Jakub Gazda, Samuel Kadoury, Robert Kanasz et Peter Drotar
Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND) Télécharger (2MB) |
Abstract
Background and Objective:
Transthoracic Echocardiography (TTE) is a fundamental, non-invasive diagnostic tool in cardiovascular medicine, enabling detailed visualization of cardiac structures that is crucial for diagnosing various heart conditions. Despite its widespread use, TTE ultrasound imaging faces inherent limitations, notably a trade-off between field of view (FoV) and resolution.
Methods: This paper introduces a novel conditional Generative Adversarial Network (cGAN), incorporating a domain-aware augmentation technique that simulates the typical cone-shaped FoV in ultrasound. This approach is specifically designed to enable effective outpainting of occluded areas, setting the foundation for our cGAN architecture, termed echoGAN.
Results: The results, obtained on two different datasets, confirm that echoGAN demonstrates the capability to generate realistic anatomical structures through outpainting, effectively broadening the viewable area in medical imaging.
Conclusions: This advancement has the potential to enhance both automatic and manual ultrasound navigation, offering a more comprehensive view that could significantly reduce the learning curve associated with ultrasound imaging.
Mots clés
| Matériel d'accompagnement: | |
|---|---|
| Département: | Département de génie informatique et génie logiciel |
| Organismes subventionnaires: | NextGenerationEU, Slovak Research and Development Agency |
| Numéro de subvention: | 09I03-03-V04-00394, APVV-23-0411 |
| URL de PolyPublie: | https://publications.polymtl.ca/66166/ |
| Titre de la revue: | Computer Methods and Programs in Biomedicine (vol. 269) |
| Maison d'édition: | Elsevier |
| DOI: | 10.1016/j.cmpb.2025.108869 |
| URL officielle: | https://doi.org/10.1016/j.cmpb.2025.108869 |
| Date du dépôt: | 16 juin 2025 12:28 |
| Dernière modification: | 12 févr. 2026 14:19 |
| Citer en APA 7: | Gazda, M., Gazda, J., Kadoury, S., Kanasz, R., & Drotar, P. (2025). echoGAN: Extending the field of view in transthoracic echocardiography through conditional GAN-based outpaintin. Computer Methods and Programs in Biomedicine, 269, 108869 (9 pages). https://doi.org/10.1016/j.cmpb.2025.108869 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
