Yann-Meing Law, Daniel Appelö et Thomas Hagstrom
Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (9MB) |
Abstract
We propose a novel Hermite-Taylor correction function method to handle embedded boundary and interface conditions for Maxwell’s equations. The Hermite-Taylor method evolves the electromagnetic fields and their derivatives through order in each Cartesian coordinate. This makes the development of a systematic approach to enforce boundary and interface conditions difficult. Here we use the correction function method to update the numerical solution where the Hermite-Taylor method cannot be applied directly. Time derivatives of boundary and interface conditions, converted into spatial derivatives, are enforced to obtain a stable method and relax the time-step size restriction of the Hermite-Taylor correction function method. The proposed high-order method offers a flexible systematic approach to handle embedded boundary and interface problems, including problems with discontinuous solutions at the interface. This method is also easily adaptable to other first order hyperbolic systems.
Mots clés
| Département: | Département de mathématiques et de génie industriel |
|---|---|
| URL de PolyPublie: | https://publications.polymtl.ca/66061/ |
| Titre de la revue: | Journal of Computational Physics (vol. 537) |
| Maison d'édition: | Elsevier BV |
| DOI: | 10.1016/j.jcp.2025.114111 |
| URL officielle: | https://doi.org/10.1016/j.jcp.2025.114111 |
| Date du dépôt: | 10 juin 2025 09:10 |
| Dernière modification: | 18 nov. 2025 16:36 |
| Citer en APA 7: | Law, Y.-M., Appelö, D., & Hagstrom, T. (2025). The Hermite-Taylor correction function method for embedded boundary and Maxwell's interface problems. Journal of Computational Physics, 537, 114111 (29 pages). https://doi.org/10.1016/j.jcp.2025.114111 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
