Xi Ye et Guillaume-Alexandre Bilodeau
Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale (CC BY-NC) Télécharger (1MB) |
Abstract
Different conditional video synthesis tasks, such as frame interpolation and future frame prediction, are typically addressed individually by task-specific models, despite their shared underlying characteristics. Additionally, most conditional video synthesis models are limited to discrete frame generation at specific integer time steps. This paper presents a unified model that tackles both challenges simultaneously. We demonstrate that conditional video synthesis can be formulated as a neural process, where input spatio-temporal coordinates are mapped to target pixel values by conditioning on context spatio-temporal coordinates and pixel values. Our approach leverages a Transformer-based non-autoregressive conditional video synthesis model that takes the implicit neural representation of coordinates and context pixel features as input. Our task-specific models outperform previous methods for future frame prediction and frame interpolation across multiple datasets. Importantly, our model enables temporal continuous video synthesis at arbitrary high frame rates, outperforming the previous state-of-the-art.
Mots clés
| Matériel d'accompagnement: | |
|---|---|
| Département: | Département de génie informatique et génie logiciel |
| Centre de recherche: | LITIV - Laboratoire d'interprétation et de traitement d'images et vidéo |
| Organismes subventionnaires: | NSERC, FRQ-NT |
| Numéro de subvention: | RGPIN-2020-04633 |
| URL de PolyPublie: | https://publications.polymtl.ca/66039/ |
| Titre de la revue: | Computer Vision and Image Understanding (vol. 259) |
| Maison d'édition: | Elsevier BV |
| DOI: | 10.1016/j.cviu.2025.104387 |
| URL officielle: | https://doi.org/10.1016/j.cviu.2025.104387 |
| Date du dépôt: | 10 juin 2025 09:42 |
| Dernière modification: | 11 févr. 2026 04:15 |
| Citer en APA 7: | Ye, X., & Bilodeau, G.-A. (2025). Continuous conditional video synthesis by neural processes. Computer Vision and Image Understanding, 259, 104387 (11 pages). https://doi.org/10.1016/j.cviu.2025.104387 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
