<  Retour au portail Polytechnique Montréal

Critical Node Identification for Cyber–Physical Power Distribution Systems Based on Complex Network Theory: A Real Case Study

Mehdi Doostinia, Davide Falabretti, Giacomo Verticale et Sadegh Bolouki

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (9MB)
Afficher le résumé
Cacher le résumé

Abstract

In today’s world, power distribution systems and information and communication technology (ICT) systems are increasingly interconnected, forming cyber–physical power systems (CPPSs) at the core of smart grids. Ensuring the resilience of these systems is essential for maintaining reliable performance under disasters, failures, or cyber-attacks. Identifying critical nodes within these interdependent networks is key to preserving system robustness. This paper applies complex network (CN) theory—specifically degree centrality (DC), closeness centrality (CC), and betweenness centrality (BC)—to a real-world distribution grid integrated with an ICT layer in northeastern Italy. Simulations are conducted across three scenarios: a directed power network, an undirected power network, and an undirected ICT network. Each centrality metric generates a ranking of nodes which is validated using node removal performance (NRP) analysis. In the directed power network, in-closeness centrality and out-degree centrality are the most effective in identifying critical nodes, with correlations of 84% and 74% with NRP, respectively. DC and BC perform best in the undirected power network, with correlation values of 67% and 53%, respectively. In the ICT network, BC achieves the highest correlation (64%), followed by CC at 55%. These findings demonstrate the potential of centrality-based methods for identifying critical nodes and support strategies for enhancing CPPS resilience and fault recovery by distribution system operators.

Mots clés

Département: Département de génie informatique et génie logiciel
URL de PolyPublie: https://publications.polymtl.ca/66023/
Titre de la revue: Energies (vol. 18, no 11)
Maison d'édition: Multidisciplinary Digital Publishing Institute
DOI: 10.3390/en18112937
URL officielle: https://doi.org/10.3390/en18112937
Date du dépôt: 09 juin 2025 10:18
Dernière modification: 20 nov. 2025 04:57
Citer en APA 7: Doostinia, M., Falabretti, D., Verticale, G., & Bolouki, S. (2025). Critical Node Identification for Cyber–Physical Power Distribution Systems Based on Complex Network Theory: A Real Case Study. Energies, 18(11), 2937 (26 pages). https://doi.org/10.3390/en18112937

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document