Lucas Franck Frederic Adam, Robert Pellerin et Bruno Agard
Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (491kB) |
Abstract
Public transport organizations are increasingly concerned about reducing air pollution, leading many to transition their fleets into electric vehicles (EVs). In this context, limited battery range and charging times remain significant hurdles. Precise modeling of electric bus energy consumption is crucial. Still, existing methods often face difficulties due to the complexities of real-world conditions, such as diverse driving patterns and external factors. To tackle this, the study proposes a hybrid model combining physical principles and machine learning using real-world data from 30 buses across 130 routes over one year. Key variables like passenger load, weather, and route characteristics are incorporated. Several machine learning models, including MLP, KAN, and XGBoost, are compared using Mean Absolute Percentage Error (MAPE). The hybrid model outperforms others, achieving a low MAPE of 5.59 % on test data and 5.79 % on validation data with a low Standard Deviation. Additionally, models incorporating operational factors, such as bus lines and time of day, enhance prediction accuracy. The study concludes that integrating physical laws with machine learning offers a more accurate and stable approach to energy consumption modeling, providing a promising framework for fleet management and energy efficiency in public transport systems.
Mots clés
| Département: | Département de mathématiques et de génie industriel |
|---|---|
| Centre de recherche: |
CIRRELT - Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport LID - Laboratoire en intelligence des données |
| URL de PolyPublie: | https://publications.polymtl.ca/65988/ |
| Titre de la revue: | Sensors & Transducers (vol. 268, no 1) |
| Maison d'édition: | International Frequency Sensor Association |
| URL officielle: | https://www.proquest.com/scholarly-journals/hybrid... |
| Date du dépôt: | 05 juin 2025 15:39 |
| Dernière modification: | 26 nov. 2025 17:48 |
| Citer en APA 7: | Adam, L. F. F., Pellerin, R., & Agard, B. (2025). A Hybrid Machine Learning and Physics-based Approach for Accurate Energy Consumption Modeling of Electric Buses in Public Transport. Sensors & Transducers, 268(1), 45-58. https://www.proquest.com/scholarly-journals/hybrid-machine-learning-physics-based-approach/docview/3212840245/se-2?accountid=40695 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
