Wissal Zarrami et Guillaume-Alexandre Bilodeau
Ensemble de données (2025)
Un lien externe est disponible pour ce documentAbstract
This dataset contains raw FMCW radar signals collected for human localization and activity monitoring in indoor environments. The data was recorded using mmWave radar sensors across two different laboratory settings, designed to simulate real-life scenarios for human detection and localization tasks.
The dataset includes experiments with 1, 2, and 3 people, covering various positions, walking trajectories, and intermediate locations to evaluate model generalization. Ground truth information is embedded in the folder names, indicating the true distance and angle of the targets.
Each data folder contains 18 files: 9 files per antenna capturing complex-valued signals (.cf32 format) for multi-antenna processing. The signals are recorded without any preprocessing or feature extraction, enabling researchers to explore raw data learning, end-to-end modeling, or classical signal processing pipelines.
This dataset is especially suitable for research in radar-based human localization, privacy-preserving monitoring, signal enhancement, and machine learning on raw radar data.
| Département: | Département de génie informatique et génie logiciel |
|---|---|
| URL de PolyPublie: | https://publications.polymtl.ca/65886/ |
| Source: | IEEE DataPort |
| Maison d'édition: | IEEE |
| DOI: | 10.21227/fa4h-cj47 |
| URL officielle: | https://doi.org/10.21227/fa4h-cj47 |
| Date du dépôt: | 02 juin 2025 16:01 |
| Dernière modification: | 02 juin 2025 16:16 |
| Citer en APA 7: | Zarrami, W., & Bilodeau, G.-A. (2025). Raw_radar_fmcw_Dataset [Ensemble de données]. IEEE DataPort. https://doi.org/10.21227/fa4h-cj47 |
|---|---|
Statistiques
Dimensions
