<  Retour au portail Polytechnique Montréal

Increasing 3D printing accuracy through convolutional neural network-based compensation for geometric deviations

Moustapha Jadayel et Farbod Khameneifar

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (6MB)
Afficher le résumé
Cacher le résumé

Abstract

As Additive Manufacturing (AM) evolves from prototyping to full-scale production, improving geometric accuracy becomes increasingly critical, especially for applications requiring high dimensional fidelity. This study proposes a machine learning-based approach to enhance the geometric accuracy of 3D printed parts produced by Fused Filament Fabrication (FFF), a widely used material extrusion process in which thermoplastic filament is heated and deposited layer by layer to form a part. Our method relies on a Convolutional Neural Network (CNN) trained to predict a systematic deviation field based on 3D scan data of a sacrificial print. These scans are acquired using a structured light 3D scanner, which provides detailed surface information on geometric deviations that arise during the printing process. The predicted deviation field is then inverted and applied to the digital model to generate a compensated geometry, which, when printed, offsets the errors observed in the original part. Experimental validation using a complex reference geometry shows that the proposed compensation method achieves an 88.5% reduction in mean absolute geometric deviation compared to the uncompensated print. This significant improvement underscores the CNN’s ability to generalize across geometric features and capture systematic deformation patterns inherent to FFF. The results demonstrate the potential of combining 3D scanning and deep learning to enable adaptive, data-driven compensation strategies in AM. The method proposed in this paper contributes to reducing trial-and-error iterations, improving part quality, and facilitating the broader adoption of FFF for precision-demanding industrial applications.

Mots clés

Département: Département de génie mécanique
Organismes subventionnaires: NSERC / CRSNG
Numéro de subvention: RGPIN-2017-06922
URL de PolyPublie: https://publications.polymtl.ca/64960/
Titre de la revue: Machines (vol. 13, no 5)
Maison d'édition: MDPI
DOI: 10.3390/machines13050382
URL officielle: https://doi.org/10.3390/machines13050382
Date du dépôt: 06 mai 2025 10:01
Dernière modification: 26 nov. 2025 17:49
Citer en APA 7: Jadayel, M., & Khameneifar, F. (2025). Increasing 3D printing accuracy through convolutional neural network-based compensation for geometric deviations. Machines, 13(5), 382 (22 pages). https://doi.org/10.3390/machines13050382

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document