Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (527kB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (179kB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (171kB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (194kB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (180kB) |
Abstract
Background: Alzheimer disease (AD) is a severe neurological brain disorder. While not curable, earlier detection can help improve symptoms substantially. Machine learning (ML) models are popular and well suited for medical image processing tasks such as computer-aided diagnosis. These techniques can improve the process for an accurate diagnosis of AD.
Objective: In this paper, a complete computer-aided diagnosis system for the diagnosis of AD has been presented. We investigate the performance of some of the most used ML techniques for AD detection and classification using neuroimages from the Open Access Series of Imaging Studies (OASIS) and Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets.
Methods: The system uses artificial neural networks (ANNs) and support vector machines (SVMs) as classifiers, and dimensionality reduction techniques as feature extractors. To retrieve features from the neuroimages, we used principal component analysis (PCA), linear discriminant analysis, and t-distributed stochastic neighbor embedding. These features are fed into feedforward neural networks (FFNNs) and SVM-based ML classifiers. Furthermore, we applied the vision transformer (ViT)–based ANNs in conjunction with data augmentation to distinguish patients with AD from healthy controls.
Results: Experiments were performed on magnetic resonance imaging and positron emission tomography scans. The OASIS dataset included a total of 300 patients, while the ADNI dataset included 231 patients. For OASIS, 90 (30%) patients were healthy and 210 (70%) were severely impaired by AD. Likewise for the ADNI database, a total of 149 (64.5%) patients with AD were detected and 82 (35.5%) patients were used as healthy controls. An important difference was established between healthy patients and patients with AD (P=.02). We examined the effectiveness of the three feature extractors and classifiers using 5-fold cross-validation and confusion matrix–based standard classification metrics, namely, accuracy, sensitivity, specificity, precision, F₁-score, and area under the receiver operating characteristic curve (AUROC). Compared with the state-of-the-art performing methods, the success rate was satisfactory for all the created ML models, but SVM and FFNN performed best with the PCA extractor, while the ViT classifier performed best with more data. The data augmentation/ViT approach worked better overall, achieving accuracies of 93.2% (sensitivity=87.2, specificity=90.5, precision=87.6, F₁-score=88.7, and AUROC=92) for OASIS and 90.4% (sensitivity=85.4, specificity=88.6, precision=86.9, F₁-score=88, and AUROC=90) for ADNI.
Mots clés
- Alzheimer disease
- computer-aided diagnosis system
- machine learning
- principal component analysis
- linear discriminant analysis
- t-distributed stochastic neighbor embedding
- feedforward neural network
- vision transformer architecture
- support vector machines
- magnetic resonance imaging
- positron emission tomography imaging
- Open Access Series of Imaging Studies
- Alzheimer's Disease Neuroimaging Initiative
- OASIS
- ADNI
| Département: | Département de génie informatique et génie logiciel |
|---|---|
| Organismes subventionnaires: | Fonds de recherche du Québec-Nature et Technologies -FRQNT |
| Numéro de subvention: | B3X × 314498, B3XR × 358107 |
| URL de PolyPublie: | https://publications.polymtl.ca/64723/ |
| Titre de la revue: | JMIRx Med (vol. 6) |
| Maison d'édition: | JMIR Publications Inc. |
| DOI: | 10.2196/60866 |
| Autres DOI associés à ce document: | 10.2196/72821 |
| URL officielle: | https://doi.org/10.2196/60866 |
| Date du dépôt: | 29 avr. 2025 09:22 |
| Dernière modification: | 15 nov. 2025 12:00 |
| Citer en APA 7: | Lazli, L. (2025). Improved Alzheimer disease diagnosis with a machine learning approach and neuroimaging: Case study development. JMIRx Med, 6, e60866 (13 pages). https://doi.org/10.2196/60866 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
