<  Retour au portail Polytechnique Montréal

A comprehensive review of ICU readmission prediction models: From statistical methods to deep learning approaches

Waleed Sayed Ahmed Fathy Gharib, Guillaume Émériaud et Farida Cheriet

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale (CC BY-NC)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

The prediction of Intensive Care Unit (ICU) readmission has become a crucial area of research due to the increasing demand for ICU resources and the need to provide timely interventions to critically ill patients. In recent years, several studies have explored the use of statistical, machine learning (ML), and deep learning (DL) models to predict ICU readmission. This review paper presents an extensive overview of these studies and discusses the challenges associated with ICU readmission prediction. We categorize the studies based on the type of model used and evaluate their strengths and limitations. We also discuss the performance metrics used to evaluate the models and their potential clinical applications. In addition, this review explores current methodologies, data usage, and recent advances in interpretability and explainable AI for medical applications, offering insights to guide future research and development in this field. Finally, we identify gaps in the current literature and provide recommendations for future research. Recent advances like ML and DL have moderately improved the prediction of the risk of ICU readmission. However, more progress is needed to reach the precision required to build computerized decision support tools.

Mots clés

Département: Département de génie informatique et génie logiciel
Organismes subventionnaires: NSERC, Medteq
URL de PolyPublie: https://publications.polymtl.ca/64598/
Titre de la revue: Artificial Intelligence in Medicine
Maison d'édition: Elsevier BV
DOI: 10.1016/j.artmed.2025.103126
URL officielle: https://doi.org/10.1016/j.artmed.2025.103126
Date du dépôt: 22 avr. 2025 14:34
Dernière modification: 10 nov. 2025 06:23
Citer en APA 7: Gharib, W. S. A. F., Émériaud, G., & Cheriet, F. (2025). A comprehensive review of ICU readmission prediction models: From statistical methods to deep learning approaches. Artificial Intelligence in Medicine, 103126 (16 pages). https://doi.org/10.1016/j.artmed.2025.103126

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document