Waleed Sayed Ahmed Fathy Gharib, Guillaume Émériaud et Farida Cheriet
Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale (CC BY-NC) Télécharger (2MB) |
Abstract
The prediction of Intensive Care Unit (ICU) readmission has become a crucial area of research due to the increasing demand for ICU resources and the need to provide timely interventions to critically ill patients. In recent years, several studies have explored the use of statistical, machine learning (ML), and deep learning (DL) models to predict ICU readmission. This review paper presents an extensive overview of these studies and discusses the challenges associated with ICU readmission prediction. We categorize the studies based on the type of model used and evaluate their strengths and limitations. We also discuss the performance metrics used to evaluate the models and their potential clinical applications. In addition, this review explores current methodologies, data usage, and recent advances in interpretability and explainable AI for medical applications, offering insights to guide future research and development in this field. Finally, we identify gaps in the current literature and provide recommendations for future research. Recent advances like ML and DL have moderately improved the prediction of the risk of ICU readmission. However, more progress is needed to reach the precision required to build computerized decision support tools.
Mots clés
| Département: | Département de génie informatique et génie logiciel |
|---|---|
| Organismes subventionnaires: | NSERC, Medteq |
| URL de PolyPublie: | https://publications.polymtl.ca/64598/ |
| Titre de la revue: | Artificial Intelligence in Medicine |
| Maison d'édition: | Elsevier BV |
| DOI: | 10.1016/j.artmed.2025.103126 |
| URL officielle: | https://doi.org/10.1016/j.artmed.2025.103126 |
| Date du dépôt: | 22 avr. 2025 14:34 |
| Dernière modification: | 10 nov. 2025 06:23 |
| Citer en APA 7: | Gharib, W. S. A. F., Émériaud, G., & Cheriet, F. (2025). A comprehensive review of ICU readmission prediction models: From statistical methods to deep learning approaches. Artificial Intelligence in Medicine, 103126 (16 pages). https://doi.org/10.1016/j.artmed.2025.103126 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
