<  Retour au portail Polytechnique Montréal

Machine learning models for predicting volumetric errors based on scale and master balls artefact probing data

Min Zeng, Miao Feng, J. R. René Mayer, Elie Bitar-Nehme et Xuan Truong Duong

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (26MB)
Afficher le résumé
Cacher le résumé

Abstract

The volumetric accuracy of machine tools is important to both machine tool manufacturers and users. Predicting volumetric errors (VEs) is a pre-requisite for their compensation yielding increased dimensional quality of machined parts. However, predicting VEs in five-axis machine tools is challenging due to the complexity of error sources and their associated physics-based model. Machine learning (ML) is used to predict VEs under no load and stable thermal conditions. Data is acquired using a scale and master ball artefact (SAMBA) and on-machine touch probing. A general process for determining the minimum number of balls required to generate data to satisfactorily train an ML model is proposed. The VEs prediction is verified using synthetic data for inter-axis and some intra-axis geometric errors, and then validated using only experimental data. Different datasets based on decreasing number of balls are tested to train either a Neural Networks (NN) or an eXtreme Gradient Boosting (XGBoost) algorithm to compare their performances. The results show that, both NN and XGBoost are effective to predict VEs of a five-axis machine tool with wCBXfZY(S)t topology regardless of the geometric error parameter values. By using only experimental data of twenty balls to train the models, XGBoost outperforms NN in all four error metrics and processing time. A time efficient scheme was tested whereby only two master balls plus one scale bar dataset and an additional master ball (when only the spindle rotates) were used for training NN.

Mots clés

Département: Département de génie mécanique
Organismes subventionnaires: NSERC
Numéro de subvention: RGPIN-2022-04092
URL de PolyPublie: https://publications.polymtl.ca/64401/
Titre de la revue: CIRP Journal of Manufacturing Science and Technology (vol. 59)
Maison d'édition: Elsevier
DOI: 10.1016/j.cirpj.2025.03.003
URL officielle: https://doi.org/10.1016/j.cirpj.2025.03.003
Date du dépôt: 03 avr. 2025 10:01
Dernière modification: 13 nov. 2025 21:24
Citer en APA 7: Zeng, M., Feng, M., Mayer, J. R. R., Bitar-Nehme, E., & Duong, X. T. (2025). Machine learning models for predicting volumetric errors based on scale and master balls artefact probing data. CIRP Journal of Manufacturing Science and Technology, 59, 135-157. https://doi.org/10.1016/j.cirpj.2025.03.003

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document