<  Retour au portail Polytechnique Montréal

Resource allocation for trustworthy artificial intelligence projects in African context

Abiola Joseph Azeez, Loic Elnathan Tiokou Fangang et Edmund Terem Ugar

Chapitre de livre (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (263kB)
Afficher le résumé
Cacher le résumé

Abstract

This study pursues one question: What are the implications of funding disparities on the development and implementation of trustworthy AI frameworks tailored to the African context, and how can proactive strategies be employed to address these disparities towards developing the African trustworthy AI projects landscape? In response, this chapter addresses resource allocation challenges in creating a trustworthy AI framework within the African context. It highlights concerns about Western-biased AI technologies and the historical impact of colonialism on funding inadequacies, which perpetuate technological colonialism. The argument stresses the need for proactive strategies from African governments to foster AI development. Despite the projected $15.7 trillion global economic value of AI by 2030, Africa's share remains disproportionately low. For instance, in 2022, the US invested $47.7 billion in AI, while Africa's investment was only $2.0 billion. Moreover, Africa's AI investments often come from Western sources, which further exacerbates funding biases. The chapter aims to demonstrate how this funding gap hampers the development of trustworthy AI from an African perspective. Drawing on global AI projects, it advocates for addressing the funding deficit to prioritise trustworthy AI research in Africa. Furthermore, the chapter proposes an ideal trustworthy AI model aligned with African ontology, emphasising relationality and human-centeredness. Lastly, it offers insights on channelling financial resources effectively, including dormant fund utilisation, corporate social responsibility, partnerships, and community-driven initiatives, to foster a trustworthy AI framework rooted in the African ethos.

Département: Département de génie informatique et génie logiciel
ISBN: 978-3-031-75674-0
URL de PolyPublie: https://publications.polymtl.ca/63053/
Éditeurs ou éditrices: Damian Okaibedi Eke, Kutoma Wakunuma, Simisola Akintoye et George Ogoh
Maison d'édition: Palgrave Macmillan Cham
DOI: 10.1007/978-3-031-75674-0_6
URL officielle: https://doi.org/10.1007/978-3-031-75674-0_6
Date du dépôt: 04 mars 2025 09:04
Dernière modification: 16 oct. 2025 15:55
Citer en APA 7: Azeez, A. J., Tiokou Fangang, L. E., & Ugar, E. T. (2025). Resource allocation for trustworthy artificial intelligence projects in African context. Dans Okaibedi Eke, D., Wakunuma, K., Akintoye, S., & Ogoh, G. (édit.), Trustworthy AI (p. 119-143). https://doi.org/10.1007/978-3-031-75674-0_6

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document