<  Retour au portail Polytechnique Montréal

GIST : Generated Inputs Sets Transferability in Deep Learning

Florian Tambon, Foutse Khomh et Giuliano Antoniol

Article de revue (2024)

Un lien externe est disponible pour ce document
Afficher le résumé
Cacher le résumé

Abstract

To foster the verifiability and testability of Deep Neural Networks (DNN), an increasing number of methods for test case generation techniques are being developed. When confronted with testing DNN models, the user can apply any existing test generation technique. However, it needs to do so for each technique and each DNN model under test, which can be expensive. Therefore, a paradigm shift could benefit this testing process: rather than regenerating the test set independently for each DNN model under test, we could transfer from existing DNN models. This paper introduces GIST (Generated Inputs Sets Transferability), a novel approach for the efficient transfer of test sets. Given a property selected by a user (e.g., neurons covered, faults), GIST enables the selection of good test sets from the point of view of this property among available test sets. This allows the user to recover similar properties on the transferred test sets as he would have obtained by generating the test set from scratch with a test cases generation technique. Experimental results show that GIST can select effective test sets for the given property to transfer. Moreover, GIST scales better than reapplying test case generation techniques from scratch on DNN models under test.

Matériel d'accompagnement:
Département: Département de génie informatique et génie logiciel
URL de PolyPublie: https://publications.polymtl.ca/59712/
Titre de la revue: ACM Transactions on Software Engineering and Methodology (vol. 33, no 8)
Maison d'édition: Association for Computing Machinery
DOI: 10.1145/3672457
URL officielle: https://doi.org/10.1145/3672457
Date du dépôt: 19 nov. 2024 11:21
Dernière modification: 19 déc. 2025 10:24
Citer en APA 7: Tambon, F., Khomh, F., & Antoniol, G. (2024). GIST : Generated Inputs Sets Transferability in Deep Learning. ACM Transactions on Software Engineering and Methodology, 33(8), 214 (38 pages). https://doi.org/10.1145/3672457

Statistiques

Dimensions

Actions réservées au personnel

Afficher document Afficher document