<  Retour au portail Polytechnique Montréal

Evaluation of a coupled CFD and multi-body motion model for ice-structure interaction simulation

Hanif Pourshahbaz, Tadros Ghobrial et Ahmad Shakibaeinia

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (6MB)
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Matériel supplémentaire
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (3MB)
Afficher le résumé
Cacher le résumé

Abstract

The interaction of water flow, ice, and structures is common in fluvial ice processes, particularly around Ice Control Structures (ICSs) that are used to manage and prevent ice jam floods. To evaluate the effectiveness of ICSs, it is essential to understand the complex interaction between water flow, ice and the structure. Numerical modeling is a valuable tool that can facilitate such understanding. Until now, classical Eulerian mesh-based methods have not been evaluated for the simulation of ice interaction with ICS. In this paper we evaluate the capability, accuracy, and efficiency of a coupled Computational Fluid Dynamic (CFD) and multi-body motion numerical model, based on the mesh-based FLOW-3D V.2023 R1 software for simulation of ice-structure interactions in several benchmark cases. The model’s performance was compared with results from meshless-based models (performed by others) for the same laboratory test cases that were used as a reference for the comparison. To this end, simulation results from a range of dam break laboratory experiments were analyzed, encompassing varying numbers of floating objects with distinct characteristics, both in the presence and absence of ICS, and under different downstream water levels. The results show that the overall accuracy of the FLOW-3D model under various experimental conditions resulted in a RMSE of 0.0534 as opposed to an overall RMSE of 0.0599 for the meshless methods. Instabilities were observed in the FLOW-3D model for more complex phenomena that involve open boundaries and a larger number of blocks. Although the FLOW-3D model exhibited a similar computational time to the GPU-accelerated meshless-based models, constraints on the processors speed and the number of cores available for use by the processors could limit the computational time.

Mots clés

ice structure interaction; ice control structure (ICS); CFD modeling; FLOW-3D; multi-body motion model

Sujet(s): 1000 Génie civil > 1000 Génie civil
1000 Génie civil > 1006 Génie hydrologique
Département: Département des génies civil, géologique et des mines
Organismes subventionnaires: Ministère de Sécurité Publique de Québec - FLUTEIS project (project number CPS 18-19-26)
URL de PolyPublie: https://publications.polymtl.ca/59186/
Titre de la revue: Water (vol. 16, no 17)
Maison d'édition: MDPI
DOI: 10.3390/w16172454
URL officielle: https://doi.org/10.3390/w16172454
Date du dépôt: 18 sept. 2024 14:45
Dernière modification: 17 oct. 2024 19:33
Citer en APA 7: Pourshahbaz, H., Ghobrial, T., & Shakibaeinia, A. (2024). Evaluation of a coupled CFD and multi-body motion model for ice-structure interaction simulation. Water, 16(17), 2454 (23 pages). https://doi.org/10.3390/w16172454

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document