Jihene Rezgui, Félix Jobin, Younes Kechout, Chritine Turgeon et Foutse Khomh
Communication écrite (2024)
Un lien externe est disponible pour ce documentAbstract
Dyslexia, characterized by severe challenges in reading and spelling acquisition, presents a substantial barrier to proficient literacy, resulting in significantly reduced reading speed (2 to 3 times slower) and diminished text comprehension. With a prevalence ranging from 5G to 10 % in the population, early intervention by speech and language pathologists (SLPs) can mitigate dyslexia's effects, but the diagnosis bottleneck impedes timely support. To address this, we propose leveraging machine learning tools to expedite the diagnosis process, focusing on automating phonetic transcription, a critical step in dyslexia assessment. We investigated the practicality of two model configurations utilizing Google's speech-to-text API with children speech in evaluation scenarios and compared their results against transcriptions crafted by experts. The first configuration focuses on Google API's speech-to-text while the second integrates Phonemizer, a text-to-phonemes tool based on a dictionary. Results analysis indicate that our Google-Phonemizer model yields reading accuracies comparable to those computed from human-made transcriptions, offering promise for clinical application. These findings underscore the potential of AI-driven solutions to enhance dyslexia diagnosis efficiency, paving the way for improved accessibility to vital SLP services.
Mots clés
automatic speech recognition; reliability; phoneme recognition; learning disabilities; dyslexia
Sujet(s): |
2700 Technologie de l'information > 2700 Technologie de l'information 2800 Intelligence artificielle > 2801 Langage naturel et reconnaissance de la parole |
---|---|
Département: | Département de génie informatique et génie logiciel |
Organismes subventionnaires: | FRQ-Inno |
URL de PolyPublie: | https://publications.polymtl.ca/58796/ |
Nom de la conférence: | 2024 International Conference on Smart Applications, Communications and Networking (SmartNets 2024) |
Lieu de la conférence: | Harrisonburg, VA, USA |
Date(s) de la conférence: | 2024-05-28 - 2024-05-30 |
Maison d'édition: | Institute of Electrical and Electronics Engineers |
DOI: | 10.1109/smartnets61466.2024.10577676 |
URL officielle: | https://doi.org/10.1109/smartnets61466.2024.105776... |
Date du dépôt: | 21 août 2024 00:09 |
Dernière modification: | 25 sept. 2024 16:51 |
Citer en APA 7: | Rezgui, J., Jobin, F., Kechout, Y., Turgeon, C., & Khomh, F. (mai 2024). Towards a reliable french speech recognition tool for an automated diagnosis of learning disabilities [Communication écrite]. 2024 International Conference on Smart Applications, Communications and Networking (SmartNets 2024), Harrisonburg, VA, USA (6 pages). https://doi.org/10.1109/smartnets61466.2024.10577676 |
---|---|
Statistiques
Dimensions