Sergi Arfelis, Ana I. Martín-Perales, Remy Nguyen, Antonio Pérez, Igor Cherubin, Christophe Len, Irene Malpartida, Alba Bala et Pere Fullana-i-Palmer
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (1MB) |
|
Libre accès au plein texte de ce document Feuille de calcul - Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (762kB) |
Abstract
The need to explore contemporary alternatives for industrial production has driven the development of innovative techniques that address critical limitations linked to traditional batch mechanochemistry. One particularly promising strategy involves the integration of flow processes with mechanochemistry. Three noteworthy technologies in this domain are single-screw extrusion (SSE) and twin-screw extrusion (TSE) and Impact (Induction) in Continuous-flow Heated Mechanochemistry (ICHeM). These technologies go beyond the industrial production of polymers, extending to the synthesis of active pharmaceutical ingredients, the fabrication of (nano)materials, and the extraction of high-added value products through the valorisation of biomass and waste materials. In accordance with the principles of green chemistry, ball milling processes are generally considered greener compared to conventional solvothermal processes. In fact, ball milling processes require less solvent, enhance reaction rates and reaction conversion by increasing surface area and substituting thermal energy with mechanochemical energy, among others. Special attention will be given to the types of products, reactants, size of the milling balls and reaction conditions, selecting 60 articles after applying a screening methodology during the period 2020–2022. This paper aims to compile and analyze the cutting edge of research in utilizing mechanochemistry for green chemistry applications.
Mots clés
mechanochemistry; green chemistry; organic synthesis; nanomaterials; metal-organic frameworks; biomaterials
Sujet(s): |
1500 Génie de l'environnement > 1500 Génie de l'environnement 1800 Génie chimique > 1800 Génie chimique |
---|---|
Département: | Département de génie chimique |
Organismes subventionnaires: | UNESCO Chair in Life Cycle and Climate Change at ESCI-UPF, Deasyl SA |
URL de PolyPublie: | https://publications.polymtl.ca/58777/ |
Titre de la revue: | Heliyon (vol. 10, no 14) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.heliyon.2024.e34655 |
URL officielle: | https://doi.org/10.1016/j.heliyon.2024.e34655 |
Date du dépôt: | 30 juil. 2024 16:07 |
Dernière modification: | 27 sept. 2024 04:31 |
Citer en APA 7: | Arfelis, S., Martín-Perales, A. I., Nguyen, R., Pérez, A., Cherubin, I., Len, C., Malpartida, I., Bala, A., & Fullana-i-Palmer, P. (2024). Linking mechanochemistry with the green chemistry principles: review article. Heliyon, 10(14), e34655 (14 pages). https://doi.org/10.1016/j.heliyon.2024.e34655 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions