<  Retour au portail Polytechnique Montréal

First impressions on sustainable innovation matter: Using NLP to replicate B-lab environmental index by analyzing companies' homepages

Pietro Cruciata, Davide Pulizzotto et Catherine Beaudry

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale (CC BY-NC)
Télécharger (849kB)
Afficher le résumé
Cacher le résumé

Abstract

This study explores the potential for developing web-based environmental culture indicators by analyzing signals extracted from the homepages of company websites. The primary aim is to assess the proposed method's ability to generate indicators that can serve as proxies for real environmental measures by leveraging the homepage content. We performed a Zero-Shot Text Classification (ZSTC) using a BERT-type Natural Language Processing (NLP) model, followed by a regression analysis to test the ability of these web-based indicators to replicate the B-Lab environmental index and comprehend the dynamics behind the results. This pilot study explains 57 % of the variance of the B-Lab environmental index using the results of the ZSTC score and companies' characteristics. This research makes two significant contributions. First, the text content of a company's homepage seems to provide insights into its environmental performance. Second, it introduces a generalizable methodology for studying the performance of companies through their websites without the need for heavy pre-processing, significantly reducing the time and cost of research. Furthermore, the method could provide policymakers with a real-time landscape to create and finetune policies about specific topics, partially addressing the problems associated with questionnaire-based surveys.

Mots clés

zero-shot text classification; B-Corp data; sustainability; sustainable innovation; natural language processing; signal theory

Sujet(s): 2700 Technologie de l'information > 2714 Mathématiques de l'informatique
2800 Intelligence artificielle > 2801 Langage naturel et reconnaissance de la parole
Département: Département de mathématiques et de génie industriel
Organismes subventionnaires: NSERC / CRSNG, Social Sciences and Humanities Research Council of Canada (SSHRC), Partnership for the Organization of Innovation and New Tech nologies (4POINT0), Canada Excellence Research Chair in Data Science for Real-Time Decision-Making
Numéro de subvention: 435-2019-0111, CERC-2012-00002, CRC-2020-00062
URL de PolyPublie: https://publications.polymtl.ca/58622/
Titre de la revue: Technological Forecasting and Social Change (vol. 205)
Maison d'édition: Elsevier
DOI: 10.1016/j.techfore.2024.123455
URL officielle: https://doi.org/10.1016/j.techfore.2024.123455
Date du dépôt: 26 juin 2024 12:51
Dernière modification: 22 nov. 2024 14:08
Citer en APA 7: Cruciata, P., Pulizzotto, D., & Beaudry, C. (2024). First impressions on sustainable innovation matter: Using NLP to replicate B-lab environmental index by analyzing companies' homepages. Technological Forecasting and Social Change, 205, 123455 (19 pages). https://doi.org/10.1016/j.techfore.2024.123455

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document