Benjamin Francolini, Luming Fan, Ehsan Abbasi-Atibeh, Gilles Bourque, Patrizio Vena et Jeffrey M. Bergthorson
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (7MB) |
Abstract
Hydrogen combustion is a promising alternative to fossil fuel combustion in an effort to reduce our carbon footprint. However, hydrogen combustion is prone to thermodiffusive instabilities largely dependent on differential diffusion, a phenomenon that can lead to higher probabilities of flashback in industrial burners, given hydrogen’s high reactivity and diffusivity. This paper evaluates low-swirl flames of methane and air enriched with hydrogen to highlight the onset of differential diffusion. Testing was conducted in a fully controllable swirl burner, where bulk velocity Uₐᵥ = 13 m/s and swirl number S = 0.6 were kept constant for each hydrogen–methane blend to isolate increases in flame surface area from increases in turbulence intensity. Furthermore, each fuel blend of hydrogen and methane is evaluated at the same laminar flame speed of Sᵒₗ = 0.267 m/s to isolate flame stretch effects on the turbulent burning rate. Combined hydroxyl (OH) PLIF and stereoscopic PIV at the National Research Council of Canada were used to analyze the OH fluorescence in a 2D-3C velocity field for each flame condition. High-speed PIV at McGill University was used to resolve local flame phenomena, such as local flame displacement velocity and flame stretch rate. Using these techniques, it can be observed that the flame displaces axially in response to turbulent flame speed while exhibiting increases in flamefront wrinkling. This increased corrugation due to flame stretch is highlighted in the PDFs of local curvature and κSf and is further evidenced by a shift towards positive curvatures (k > 0) for increasing H₂ volume fraction. This trend suggests that there is a strong correlation with increases in turbulent burning rate and positive curvature as a result of differential diffusion, but it is not necessarily a control mechanism of the most forward propagating points proposed by the theory of leading points.
Mots clés
differential diffusion; turbulent hydrogen combustion; low-swirl flames; PLIF/PIV diagnostics; OH fluorescence
Renseignements supplémentaires: | Data will be made available on request. |
---|---|
Sujet(s): |
2100 Génie mécanique > 2100 Génie mécanique 2100 Génie mécanique > 2110 Combustion |
Département: | Département de génie mécanique |
Organismes subventionnaires: | NSERC / CRSNG, Réseau Québécoix sur l'Énergie Intelligente, Fonds de Recherche du Québec, McGill University, Siemens Energy, Climicals, National Research Council Canada - Low-Emission Aviation Program |
URL de PolyPublie: | https://publications.polymtl.ca/58564/ |
Titre de la revue: | Applications in Energy and Combustion Science (vol. 18) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.jaecs.2024.100272 |
URL officielle: | https://doi.org/10.1016/j.jaecs.2024.100272 |
Date du dépôt: | 11 juin 2024 09:55 |
Dernière modification: | 30 sept. 2024 11:58 |
Citer en APA 7: | Francolini, B., Fan, L., Abbasi-Atibeh, E., Bourque, G., Vena, P., & Bergthorson, J. M. (2024). Investigation of differential diffusion in lean, premixed, hydrogen-enriched swirl flames. Applications in Energy and Combustion Science, 18, 100272 (16 pages). https://doi.org/10.1016/j.jaecs.2024.100272 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions