Simon Robatto Simard, Michel Gamache et Philippe Doyon-Poulin
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (6MB) |
Abstract
This paper details the design, development, and evaluation of VulcanH, a computerized maintenance management system (CMMS) specialized in preventive maintenance (PM) and predictive maintenance (PdM) management for underground mobile mining equipment. Further, it aims to expand knowledge on trust in automation (TiA) for PdM as well as contribute to the literature on explainability requirements of a PdM-capable artificial intelligence (AI). This study adopted an empirical approach through the execution of user tests with nine maintenance experts from five East-Canadian mines and implemented the User Experience Questionnaire Plus (UEQ+) and the Reliance Intentions Scale (RIS) to evaluate usability and TiA, respectively. It was found that the usability and efficiency of VulcanH were satisfactory for expert users and encouraged the gradual transition from PM to PdM practices. Quantitative and qualitative results documented participants’ willingness to rely on PdM predictions as long as suitable explanations are provided. Graphical explanations covering the full spectrum of the derived data were preferred. Due to the prototypical nature of VulcanH, certain relevant aspects of maintenance planning were not considered. Researchers are encouraged to include these notions in the evaluation of future CMMS proposals. This paper suggests a harmonious integration of both preventive and predictive maintenance practices in the mining industry. It may also guide future research in PdM to select an analytical algorithm capable of supplying adequate and causal justifications for informed decision making. This study fulfills an identified need to adopt a user-centered approach in the development of CMMSs in the mining industry. Hence, both researchers and industry stakeholders may benefit from the findings.
Mots clés
preventive maintenance; predictive maintenance; computerized maintenance management system; usability; trust in automation
Sujet(s): |
1400 Génie minier et minéral > 1400 Génie minier et minéral 2700 Technologie de l'information > 2700 Technologie de l'information 2700 Technologie de l'information > 2706 Génie logiciel 2800 Intelligence artificielle > 2800 Intelligence artificielle (Vision artificielle, voir 2603) |
---|---|
Département: | Département de mathématiques et de génie industriel |
Organismes subventionnaires: | Fonds de recherche du Québec - Nature et technologies (FRQ-NT) |
Numéro de subvention: | 2020-MN-281330 |
URL de PolyPublie: | https://publications.polymtl.ca/58347/ |
Titre de la revue: | Mining (vol. 4, no 2) |
Maison d'édition: | MDPI |
DOI: | 10.3390/mining4020019 |
URL officielle: | https://doi.org/10.3390/mining4020019 |
Date du dépôt: | 17 mai 2024 11:13 |
Dernière modification: | 02 oct. 2024 19:57 |
Citer en APA 7: | Robatto Simard, S., Gamache, M., & Doyon-Poulin, P. (2024). Development and usability evaluation of VulcanH, a CMMS prototype for preventive and predictive maintenance of mobile mining equipment. Mining, 4(2), 326-351. https://doi.org/10.3390/mining4020019 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions