Emmanuelle Richer, Marissé Masís Solano, Farida Cheriet, Mark R. Lesk et Santiago Costantino
Article de revue (2024)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (2MB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (437kB) |
Abstract
The identification of eye diseases and their progression often relies on a clear visualization of the anatomy and on different metrics extracted from Optical Coherence Tomography (OCT) B-scans. However, speckle noise hinders the quality of rapid OCT imaging, hampering the extraction and reliability of biomarkers that require time series. By synchronizing the acquisition of OCT images with the timing of the cardiac pulse, we transform a low-quality OCT video into a clear version by phase-wrapping each frame to the heart pulsation and averaging frames that correspond to the same instant in the cardiac cycle. Here, we compare the performance of our one-cycle denoising strategy with a deep-learning architecture, Noise2Noise, as well as classical denoising methods such as BM3D and Non-Local Means (NLM). We systematically analyze different image quality descriptors as well as region-specific metrics to assess the denoising performance based on the anatomy of the eye. The one-cycle method achieves the highest denoising performance, increases image quality and preserves the high-resolution structures within the eye tissues. The proposed workflow can be readily implemented in a clinical setting.
Mots clés
biomedical engineering; computer science; imaging techniques; translational research
Sujet(s): |
1900 Génie biomédical > 1900 Génie biomédical 2500 Génie électrique et électronique > 2500 Génie électrique et électronique |
---|---|
Département: | Département de génie informatique et génie logiciel |
Organismes subventionnaires: | Canadian Institutes of Health Research, Canadian Space Agency, Fonds de Recherche du Québec - Santé, Glaucoma Research Society of Canada, Institut de Valorisation des données (IVADO), OPSIDIAN |
URL de PolyPublie: | https://publications.polymtl.ca/57883/ |
Titre de la revue: | Scientific Reports (vol. 14) |
Maison d'édition: | Nature |
DOI: | 10.1038/s41598-024-56935-0 |
URL officielle: | https://doi.org/10.1038/s41598-024-56935-0 |
Date du dépôt: | 28 mars 2024 15:20 |
Dernière modification: | 29 mars 2025 15:00 |
Citer en APA 7: | Richer, E., Solano, M. M., Cheriet, F., Lesk, M. R., & Costantino, S. (2024). Denoising OCT videos based on temporal redundancy. Scientific Reports, 14, 6605 (12 pages). https://doi.org/10.1038/s41598-024-56935-0 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année

Provenance des téléchargements

Dimensions