<  Retour au portail Polytechnique Montréal

Bayesian neural networks for large-scale infrastructure deterioration models

Said Ali Kamal Fakhri, Zachary Hamida et James Alexandre Goulet

Communication écrite (2023)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Partage dans les mêmes conditions (CC BY-NC-SA)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

State-space models (SSM) have been shown to be effective at modelling structural deterioration of transportation infrastructure based on visual inspections. The SSM approach was recently coupled with kernel regression (KR) to include structural attributes like age and location in the deterioration analysis to share information between similar structures. However, the existing SSM-KR method suffers from two major drawbacks: 1) it can only use a limited number of structural attributes and 2) it requires significant computational time and resources. This paper proposes a new method, titled SSM-TAGI, that uses a Bayesian neural network instead of KR for extracting information from structural attributes. The new SSM-TAGI approach is compared against SSM-KR using visual inspection data and structural attributes from a network of bridges in Canada. The new SSM-TAGI approach is shown to reduce the computational time by two orders of magnitude while maintaining comparable performance as measured by the test-set log-likelihood. SSM-TAGI also seamlessly incorporates additional structural attributes and does not require extensive preparation, making it better suited for modelling infrastructure deterioration based on visual inspections on a large scale.

Département: Département des génies civil, géologique et des mines
Organismes subventionnaires: Ministère des transports du Québec (MTQ), IVADO
URL de PolyPublie: https://publications.polymtl.ca/57348/
Nom de la conférence: 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14)
Lieu de la conférence: Dublin, Ireland
Date(s) de la conférence: 2023-07-09 - 2023-07-13
Maison d'édition: Trinity College Dublin
URL officielle: http://hdl.handle.net/2262/103198
Date du dépôt: 08 févr. 2024 10:23
Dernière modification: 02 oct. 2024 09:19
Citer en APA 7: Fakhri, S. A. K., Hamida, Z., & Goulet, J. A. (juillet 2023). Bayesian neural networks for large-scale infrastructure deterioration models [Communication écrite]. 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14), Dublin, Ireland (8 pages). http://hdl.handle.net/2262/103198

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Actions réservées au personnel

Afficher document Afficher document