Said Ali Kamal Fakhri, Zachary Hamida et James Alexandre Goulet
Communication écrite (2023)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Partage dans les mêmes conditions (CC BY-NC-SA) Télécharger (1MB) |
Abstract
State-space models (SSM) have been shown to be effective at modelling structural deterioration of transportation infrastructure based on visual inspections. The SSM approach was recently coupled with kernel regression (KR) to include structural attributes like age and location in the deterioration analysis to share information between similar structures. However, the existing SSM-KR method suffers from two major drawbacks: 1) it can only use a limited number of structural attributes and 2) it requires significant computational time and resources. This paper proposes a new method, titled SSM-TAGI, that uses a Bayesian neural network instead of KR for extracting information from structural attributes. The new SSM-TAGI approach is compared against SSM-KR using visual inspection data and structural attributes from a network of bridges in Canada. The new SSM-TAGI approach is shown to reduce the computational time by two orders of magnitude while maintaining comparable performance as measured by the test-set log-likelihood. SSM-TAGI also seamlessly incorporates additional structural attributes and does not require extensive preparation, making it better suited for modelling infrastructure deterioration based on visual inspections on a large scale.
Département: | Département des génies civil, géologique et des mines |
---|---|
Organismes subventionnaires: | Ministère des transports du Québec (MTQ), IVADO |
URL de PolyPublie: | https://publications.polymtl.ca/57348/ |
Nom de la conférence: | 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14) |
Lieu de la conférence: | Dublin, Ireland |
Date(s) de la conférence: | 2023-07-09 - 2023-07-13 |
Maison d'édition: | Trinity College Dublin |
URL officielle: | http://hdl.handle.net/2262/103198 |
Date du dépôt: | 08 févr. 2024 10:23 |
Dernière modification: | 02 oct. 2024 09:19 |
Citer en APA 7: | Fakhri, S. A. K., Hamida, Z., & Goulet, J. A. (juillet 2023). Bayesian neural networks for large-scale infrastructure deterioration models [Communication écrite]. 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14), Dublin, Ireland (8 pages). http://hdl.handle.net/2262/103198 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements