Amandeep Singh, Naser Nawayseh, Yash Kumar Dhabi et Siby Samuel
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (7MB) |
Abstract
During the evolution towards digital agriculture, the pivotal role of tractor riding necessitates a focus on improving operator performance and well-being. While most research has centered around vibration analysis, tangible solutions to control elevated vibration levels remain rare. The study aims to introduce an intelligent ThingSpeak-Enabled IoT (Internet of Things) solution that provides real-time monitoring and generates prompt warning alerts for tractor operators when vibrations exceed safe thresholds. The initial phase involved the real-time measurement of WBV (whole-body vibration) and SEAT (seat effective amplitude transmissibility). Following this, the secondary phase encompassed the analysis and validation of the system in cases where WBV and SEAT exceeded the recommended limits. The experimental design comprised 135 trials by systematically varying tractor ride parameters, including average speed (m/s), average depth (m), and pulling force (kN) levels. Daily vibration exposure response ranged from 0.43 m/s² to 0.87 m/s² with a mean exposure of 0.64 m/s², surpassing the EAV (exposure action value) threshold of 0.5 m/s². The SEAT values ranged between 91.37 and 133.08 with a mean of 108.35, that indicates insufficient seat isolation capacity, i.e., < 100. Statistically, the study ascertained a significant influence of average speed and average depth WBV and SEAT responses at a 5% significance level. It underscores the potential efficacy of altering speed and depth parameters to attenuate vibration exposure levels. Further, the effectiveness of the system was tested through the automatic transmission of warning alerts via emails, text messages, and flashing red LED light on the IoT system. This critical feature provides considerable utility for tractor operators to adjust ride settings, ensuring that the ride remains within safe vibration limits. Furthermore, adopting such an advanced warning system in tractor manufacturing signifies a pioneering step towards sustainably enhancing operator well-being.
Mots clés
digital agriculture; agriculture machinery; vibration monitoring; thingspeak; IoT (internet of thing); real-time alerts
Sujet(s): |
1600 Génie industriel > 1600 Génie industriel 2100 Génie mécanique > 2100 Génie mécanique 2700 Technologie de l'information > 2700 Technologie de l'information 6100 Science et technologie de l'alimentation > 6100 Science et technologie de l'alimentation |
---|---|
Département: | Département de mathématiques et de génie industriel |
Organismes subventionnaires: | Research Promotion Scheme (RPS), All India Council for Technical Education |
Numéro de subvention: | 8-48/FDC/RPS (Policy-1)/2019-20, 9-51/RIFD/MODROB/Policy-1/2018-19 |
URL de PolyPublie: | https://publications.polymtl.ca/56691/ |
Titre de la revue: | Journal of Engineering Research (vol. 12, no 2) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.jer.2023.08.025 |
URL officielle: | https://doi.org/10.1016/j.jer.2023.08.025 |
Date du dépôt: | 23 janv. 2024 16:34 |
Dernière modification: | 27 sept. 2024 21:57 |
Citer en APA 7: | Singh, A., Nawayseh, N., Dhabi, Y. K., & Samuel, S. (2024). Transforming farming with intelligence : smart vibration monitoring and alert system. Journal of Engineering Research, 12(2), 190-199. https://doi.org/10.1016/j.jer.2023.08.025 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions