Andrey Sobolevsky, Guillaume-Alexandre Bilodeau, Jinghui Cheng et Jin L. C. Guo
Communication écrite (2023)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (911kB) |
Abstract
Sketching out Graphical User Interface (GUI) layout is part of the pipeline of designing a GUI and a crucial task for the success of a software application. Arranging all components inside a GUI layout manually is a time-consuming task. In order to assist designers, we developed a method named GUILGET to automatically generate GUI layouts from positional constraints represented as GUI arrangement graphs (GUIAGs). The goal is to support the initial step of GUI design by producing realistic and diverse GUI layouts. The existing image layout generation techniques often cannot incorporate GUI design constraints. Thus, GUILGET needs to adapt existing techniques to generate GUI layouts that obey to constraints specific to GUI designs. GUILGET is based on transformers in order to capture the semantic in relationships between elements from GUI-AG. Moreover, the model learns constraints through the minimization of losses responsible for placing each component inside its parent layout, for not letting components overlap if they are inside the same parent, and for component alignment. Our experiments, which are conducted on the CLAY dataset, reveal that our model has the best understanding of relationships from GUI-AG and has the best performances in most of evaluation metrics. Therefore, our work contributes to improved GUI layout generation by proposing a novel method that effectively accounts for the constraints on GUI elements and paves the road for a more efficient GUI design pipeline.
Mots clés
Graphical User Interface; GUI arrangement graphs; deep learning; transformer; generative model; GUI layout
Département: | Département de génie informatique et génie logiciel |
---|---|
URL de PolyPublie: | https://publications.polymtl.ca/53760/ |
Nom de la conférence: | 36th Canadian Conference on Artificial Intelligence (CANAI 2023) |
Lieu de la conférence: | Montreal, Qc, Canada |
Date(s) de la conférence: | 2023-06-05 - 2023-06-09 |
Maison d'édition: | Canadian Artificial Intelligence Association (CAIAC) |
DOI: | 10.21428/594757db.08fe0a25 |
URL officielle: | https://doi.org/10.21428/594757db.08fe0a25 |
Date du dépôt: | 10 juil. 2023 16:30 |
Dernière modification: | 01 oct. 2024 17:23 |
Citer en APA 7: | Sobolevsky, A., Bilodeau, G.-A., Cheng, J., & Guo, J. L. C. (juin 2023). GUILGET : GUI layout generation with transformer [Communication écrite]. 36th Canadian Conference on Artificial Intelligence (CANAI 2023), Montreal, Qc, Canada (12 pages). https://doi.org/10.21428/594757db.08fe0a25 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions