<  Retour au portail Polytechnique Montréal

Bayesian calibration of traffic flow fundamental diagrams using Gaussian processes

Zhanhong Cheng, Xudong Wang, Xinyuan Chen, Martin Trépanier et Lijun Sun

Article de revue (2022)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (3MB)
Afficher le résumé
Cacher le résumé

Abstract

Modeling the relationship between vehicle speed and density on the road is a fundamental problem in traffic flow theory. Recent research found that using the least-squares (LS) method to calibrate single-regime speed-density models is biased because of the uneven distribution of samples. This paper explains the issue of the LS method from a statistical perspective: the biased calibration is caused by the correlations/dependencies in regression residuals. Based on this explanation, we propose a new calibration method for single-regime speed-density models by modeling the covariance of residuals via a zero-mean Gaussian Process (GP). Our approach can be viewed as a generalized least-squares (GLS) method with a specific covariance structure (i.e., kernel function) and is a generalization of the existing LS and the weighted least-squares (WLS) methods. Next, we use a sparse approximation to address the scalability issue of GPs and apply a Markov chain Monte Carlo (MCMC) sampling scheme to obtain the posterior distributions of the parameters for speed-density models and the hyperparameters (i.e., length scale and variance) of the GP kernel. Finally, we calibrate six well-known single-regime speed-density models with the proposed method. Results show that the proposed GP-based methods (1) significantly reduce the biases in the LS calibration, (2) achieve a similar effect as the WLS method, (3) can be used as a non-parametric speed-density model, and (4) provide a Bayesian solution to estimate posterior distributions of parameters and speed-density functions.

Mots clés

fundamental diagram; Gaussian processes; generalized least-squares; traffic flow theory

Sujet(s): 1000 Génie civil > 1000 Génie civil
1000 Génie civil > 1003 Génie du transport
1600 Génie industriel > 1600 Génie industriel
2950 Mathématiques appliquées > 2950 Mathématiques appliquées
Département: Département de mathématiques et de génie industriel
Centre de recherche: CIRRELT - Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport
Organismes subventionnaires: Fonds de recherche du Québec - Nature et technologies
URL de PolyPublie: https://publications.polymtl.ca/51966/
Titre de la revue: IEEE Open Journal of Intelligent Transportation Systems (vol. 3)
Maison d'édition: IEEE
DOI: 10.1109/ojits.2022.3220926
URL officielle: https://doi.org/10.1109/ojits.2022.3220926
Date du dépôt: 18 avr. 2023 14:58
Dernière modification: 30 sept. 2024 16:24
Citer en APA 7: Cheng, Z., Wang, X., Chen, X., Trépanier, M., & Sun, L. (2022). Bayesian calibration of traffic flow fundamental diagrams using Gaussian processes. IEEE Open Journal of Intelligent Transportation Systems, 3, 763-771. https://doi.org/10.1109/ojits.2022.3220926

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document