<  Retour au portail Polytechnique Montréal

VirtualGAN: Reducing mode collapse in generative adversarial networks using virtual mapping

Adel Abusitta, Omar Abdul Wahab et Benjamin C. M. Fung

Communication écrite (2021)

Document publié alors que les auteurs ou autrices n'étaient pas affiliés à Polytechnique Montréal

Un lien externe est disponible pour ce document
Afficher le résumé
Cacher le résumé

Abstract

This paper introduces a new framework for reducing mode collapse in Generative adversarial networks (GANs). The problem occurs when the generator learns to map several various input values (z) to the same output value, which makes the generator fail to capture all modes of the true data distribution. As a result, the diversity of synthetically produced data is lower than that of the real data. To address this problem, we propose a new and simple framework for training GANs based on the concept of virtual mapping. Our framework integrates two processes into GANs: merge and split. The merge process merges multiple data points (samples) into one before training the discriminator. In this way, the generator would be trained to capture the merged-data distribution rather than the (unmerged) data distribution. After the training, the split process is applied to the generator's output in order to split its contents and produce diverse modes. The proposed framework increases the chance of capturing diverse modes through enabling an indirect or virtual mapping between an input z value and multiple data points. This, in turn, enhances the chance of generating more diverse modes. Our results show the effectiveness of our framework compared to the existing approaches in terms of reducing the mode collapse problem.

Mots clés

training; neural networks; generative adversarial networks; generators

URL de PolyPublie: https://publications.polymtl.ca/51753/
Nom de la conférence: International Joint Conference on Neural Networks (IJCNN 2021)
Lieu de la conférence: Shenzhen, China
Date(s) de la conférence: 2021-07-18 - 2021-07-22
Maison d'édition: IEEE
DOI: 10.1109/ijcnn52387.2021.9533656
URL officielle: https://doi.org/10.1109/ijcnn52387.2021.9533656
Date du dépôt: 18 avr. 2023 14:59
Dernière modification: 25 sept. 2024 16:42
Citer en APA 7: Abusitta, A., Abdul Wahab, O., & Fung, B. C. M. (juillet 2021). VirtualGAN: Reducing mode collapse in generative adversarial networks using virtual mapping [Communication écrite]. International Joint Conference on Neural Networks (IJCNN 2021), Shenzhen, China (6 pages). https://doi.org/10.1109/ijcnn52387.2021.9533656

Statistiques

Dimensions

Actions réservées au personnel

Afficher document Afficher document