Luong Ha Nguyen, Ianis Gaudot, Shervin Khazaeli et James Alexandre Goulet
Article de revue (2019)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (3MB) |
Abstract
Modeling periodic phenomena with accuracy is a key aspect to detect abnormal behavior in time series for the context of Structural Health Monitoring. Modeling complex non-harmonic periodic pattern currently requires sophisticated techniques and significant computational resources. To overcome these limitations, this paper proposes a novel approach that combines the existing Bayesian Dynamic Linear Models with a kernel-based method for handling periodic patterns in time series. The approach is applied to model the traffic load on the Tamar Bridge and the piezometric pressure under a dam. The results show that the proposed method succeeds in modeling the stationary and non-stationary periodic patterns for both case studies. Also, it is computationally efficient, versatile, self-adaptive to changing conditions, and capable of handling observations collected at irregular time intervals.
Mots clés
Bayesian, dynamic linear models, kernel regression, structural health monitoring, kalman filter, dam, bridge
Sujet(s): | 1000 Génie civil > 1000 Génie civil |
---|---|
Département: | Département des génies civil, géologique et des mines |
Organismes subventionnaires: | CRSNG/NSERC, Hydro Québec (HQ), Hydro Québec’s Research Institute (IREQ), Institute For Data Valorization (IVADO) |
URL de PolyPublie: | https://publications.polymtl.ca/5056/ |
Titre de la revue: | Frontiers in Built Environment (vol. 5) |
Maison d'édition: | Frontiers |
DOI: | 10.3389/fbuil.2019.00008 |
URL officielle: | https://doi.org/10.3389/fbuil.2019.00008 |
Date du dépôt: | 18 juil. 2023 10:16 |
Dernière modification: | 27 sept. 2024 11:54 |
Citer en APA 7: | Nguyen, L. H., Gaudot, I., Khazaeli, S., & Goulet, J. A. (2019). A kernel-based method for modeling non-harmonic periodic phenomena in bayesian dynamic linear models. Frontiers in Built Environment, 5, 8. https://doi.org/10.3389/fbuil.2019.00008 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions