<  Retour au portail Polytechnique Montréal

Analytically Tractable Hidden-States Inference in Bayesian Neural Networks

Luong Ha Nguyen et James Alexandre Goulet

Article de revue (2022)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

With few exceptions, neural networks have been relying on backpropagation and gradient descent as the inference engine in order to learn the model parameters, because closed-form Bayesian inference for neural networks has been considered to be intractable. In this paper, we show how we can leverage the tractable approximate Gaussian inference’s (TAGI) capabilities to infer hidden states, rather than only using it for inferring the network’s parameters. One novel aspect is that it allows inferring hidden states through the imposition of constraints designed to achieve specific objectives, as illustrated through three examples: (1) the generation of adversarial-attack examples, (2) the usage of a neural network as a black-box optimization method, and (3) the application of inference on continuous-action reinforcement learning. In these three examples, the constrains are in (1), a target label chosen to fool a neural network, and in (2 & 3) the derivative of the network with respect to its input that is set to zero in order to infer the optimal input values that are either maximizing or minimizing it. These applications showcase how tasks that were previously reserved to gradient-based optimization approaches can now be approached with analytically tractable inference.

Mots clés

Bayesian; neural networks; TAGI; Gaussian inference; approximate inference; adversarial attack; optimization; reinforcement learning.

Sujet(s): 1000 Génie civil > 1000 Génie civil
Département: Département des génies civil, géologique et des mines
Organismes subventionnaires: Hydro-Quebec/IREQ, CRSNG / NSERC
URL de PolyPublie: https://publications.polymtl.ca/50473/
Titre de la revue: Journal of Machine Learning Research (vol. 23, no 50)
Maison d'édition: JMLR
URL officielle: https://www.jmlr.org/papers/volume23/21-0758/21-07...
Date du dépôt: 18 avr. 2023 14:59
Dernière modification: 08 oct. 2024 10:55
Citer en APA 7: Nguyen, L. H., & Goulet, J. A. (2022). Analytically Tractable Hidden-States Inference in Bayesian Neural Networks. Journal of Machine Learning Research, 23(50), 33 pages. https://www.jmlr.org/papers/volume23/21-0758/21-0758.pdf

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Actions réservées au personnel

Afficher document Afficher document