Rouhollah Habibey, Shahrzad Latifi, Hossein Mousavi, Mattia Pesce, Elmira Arab-Tehrany et Axel Blau
Article de revue (2017)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (1MB) |
Abstract
Due to their small dimensions, electrophysiology on thin and intricate axonal branches in support of understanding their role in normal and diseased brain function poses experimental challenges. To reduce experimental complexity, we coupled microelectrode arrays (MEAs) to bi-level microchannel devices for the long-term in vitro tracking of axonal morphology and activity with high spatiotemporal resolution. Our model allowed the long-term multisite recording from pure axonal branches in a microscopy-compatible environment. Compartmentalizing the network structure into interconnected subpopulations simplified access to the locations of interest. Electrophysiological data over 95 days in vitro (DIV) showed an age-dependent increase of axonal conduction velocity, which was positively correlated with, but independent of evolving burst activity over time. Conduction velocity remained constant at chemically increased network activity levels. In contrast, low frequency (1 Hz, 180 repetitions) electrical stimulation of axons or network subpopulations evoked amplitude-dependent direct (5-35 ms peri-stimulus) and polysynaptic (35-1,000 ms peri-stimulus) activity with temporarily (<35 ms) elevated propagation velocities along the perisomatic branches. Furthermore, effective stimulation amplitudes were found to be significantly lower (>250 mV) in microchannels when compared with those reported for unconfined cultures (>800 mV). The experimental paradigm may lead to new insights into stimulation-induced axonal plasticity.
Mots clés
Action Potentials/*physiology; Algorithms; Animals; Axons/*physiology; Cells, Cultured; Cerebral Cortex/cytology; Electric Stimulation; Electrophysiology/instrumentation/methods; *Microelectrodes; Models, Neurological; Neural Conduction/*physiology
Département: | Département de génie informatique et génie logiciel |
---|---|
Organismes subventionnaires: | IIT intramural funds |
URL de PolyPublie: | https://publications.polymtl.ca/4918/ |
Titre de la revue: | Scientific Reports (vol. 7, no 1) |
Maison d'édition: | Nature |
DOI: | 10.1038/s41598-017-09033-3 |
URL officielle: | https://doi.org/10.1038/s41598-017-09033-3 |
Date du dépôt: | 17 déc. 2021 10:41 |
Dernière modification: | 28 sept. 2024 09:13 |
Citer en APA 7: | Habibey, R., Latifi, S., Mousavi, H., Pesce, M., Arab-Tehrany, E., & Blau, A. (2017). A multielectrode array microchannel platform reveals both transient and slow changes in axonal conduction velocity. Scientific Reports, 7(1), 8558 (14 pages). https://doi.org/10.1038/s41598-017-09033-3 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions