<  Retour au portail Polytechnique Montréal

Stability and excitation dynamics of an argon micro-scaled atmospheric pressure plasma jet

M. Dünnbier, M. M. Becker, S. Iseni, R. Bansemer, D. Loffhagen, Stephan Reuter et K. D. Weltmann

Article de revue (2015)

Document en libre accès dans PolyPublie et chez l'éditeur officiel

Document publié alors que les auteurs ou autrices n'étaient pas affiliés à Polytechnique Montréal

[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

A megahertz-driven plasma jet at atmospheric pressure—the so-called micro-scaled atmospheric pressure plasma jet (μAPPJ)—operating in pure argon has been investigated experimentally and by numerical modelling. To ignite the discharge in argon within the jet geometry, a self-made plasma tuning unit was designed, which additionally enables measurements of the dissipated power in the plasma itself. Discharges in the α-mode up to their transition to the γ-mode were studied experimentally for varying frequencies. It was found that the voltage at the α–γ transition behaves inversely proportional to the applied frequency f and that the corresponding power scales with an f3/2law. Both these findings agree well with the results of time-dependent, spatially one-dimensional fluid modelling of the discharge behaviour, where the f3/2 scaling of the α–γ transition power is additionally verified by the established concept of a critical plasma density for sheath breakdown. Furthermore, phase resolved spectroscopy of the optical emission at 750.39 nm as well as at 810.37 nm and 811.53 nm was applied to analyse the excitation dynamics of the discharge at 27 MHz for different applied powers. The increase of the power leads to an additional maximum in the excitation structure of the 750.39 nm line emission at the α–γ transition point, whereas the emission structure around 811 nm does not change qualitatively. According to the fluid modelling results, this differing behaviour originates from the different population mechanisms of the corresponding energy levels of argon.

Mots clés

argon atmospheric pressure plasma jet, dissipated power, experiment and modelling, α–γ-mode transition, excitation dynamics

Sujet(s): 3100 Physique > 3100 Physique
3100 Physique > 3107 Physique des plasmas
3100 Physique > 3108 Méthodes expérimentales et instrumentation
Département: Département de génie physique
Organismes subventionnaires: German Ministry of Education and Research, German Research Foundation
Numéro de subvention: 03Z2DN12, LO 623/3-1
URL de PolyPublie: https://publications.polymtl.ca/4851/
Titre de la revue: Plasma Sources Science and Technology (vol. 24, no 6)
Maison d'édition: IOP Publishing
DOI: 10.1088/0963-0252/24/6/065018
URL officielle: https://doi.org/10.1088/0963-0252/24/6/065018
Date du dépôt: 16 août 2021 13:38
Dernière modification: 27 sept. 2024 11:31
Citer en APA 7: Dünnbier, M., Becker, M. M., Iseni, S., Bansemer, R., Loffhagen, D., Reuter, S., & Weltmann, K. D. (2015). Stability and excitation dynamics of an argon micro-scaled atmospheric pressure plasma jet. Plasma Sources Science and Technology, 24(6). https://doi.org/10.1088/0963-0252/24/6/065018

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document