<  Retour au portail Polytechnique Montréal

A benchmark for endoluminal scene segmentation of colonoscopy images

David Vazquez, Jorge Bernal, F. Javier Sánchez, Gloria Fernández-Esparrach, Antonio M. López, Adriana Romero, Michał Drożdżal et Aaron Courville

Article de revue (2017)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

Colorectal cancer (CRC) is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss rate and the inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing decision support systems (DSS) aiming to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. The proposed dataset consists of 4 relevant classes to inspect the endoluminal scene, targeting different clinical needs. Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by training standard fully convolutional networks (FCNs). We perform a comparative study to show that FCNs significantly outperform, without any further postprocessing, prior results in endoluminal scene segmentation, especially with respect to polyp segmentation and localization.

Sujet(s): 1900 Génie biomédical > 1900 Génie biomédical
2600 Robotique > 2603 Vision artificielle
2700 Technologie de l'information > 2700 Technologie de l'information
2800 Intelligence artificielle > 2800 Intelligence artificielle (Vision artificielle, voir 2603)
Département: Département de génie informatique et génie logiciel
Organismes subventionnaires: Imagia Inc., Spanish government, iVENDIS, SGR Projects, CERCA Programme/ Generalitat de Catalunya, TECNIOspring-FP7-ACCI grant, FSEED, NVIDIA Corporation
Numéro de subvention: AC/DC TRA2014-57088-C2-1-R, DPI2015-65286-R, 2014-SGR-1506, 2014-SGR-1470, 2014-SGR-135
URL de PolyPublie: https://publications.polymtl.ca/3596/
Titre de la revue: Journal of Healthcare Engineering (vol. 2017)
Maison d'édition: Hindawi Publishing Corporation
DOI: 10.1155/2017/4037190
URL officielle: https://doi.org/10.1155/2017/4037190
Date du dépôt: 09 mars 2020 15:57
Dernière modification: 26 sept. 2024 17:37
Citer en APA 7: Vazquez, D., Bernal, J., Sánchez, F. J., Fernández-Esparrach, G., López, A. M., Romero, A., Drożdżal, M., & Courville, A. (2017). A benchmark for endoluminal scene segmentation of colonoscopy images. Journal of Healthcare Engineering, 2017, 1-9. https://doi.org/10.1155/2017/4037190

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document