Kanglin Xing, J. R. René Mayer et Sofiane Achiche
Article de revue (2018)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (381kB) |
Abstract
Volumetric errors (VE) are related to the machine tool accuracy state. Extracting features from the complex VE data provides with a means to characterize this data. VE feature classification can reveal the machine tool accuracy states. This paper presents a study on how to use principal component analysis (PCA) to extract the features of VE and how to use the K-means method for machine tool accuracy state classification. The proposed data processing methods have been tested with the VE data acquired from a five-axis machine tool with different states of malfunction. The results indicate that the PCA and K-means are capable of extracting the VE feature information and classifying the fault states including the C axis encoder fault, uncalibrated C axis encoder fault, and pallet location fault from the machine tool normal states. This research provides a new way for VE features extraction and classification.
Mots clés
machine tools; volumetric errors; feature extraction; feature classification; principal component analysis; K-means
Sujet(s): |
2100 Génie mécanique > 2100 Génie mécanique 2100 Génie mécanique > 2109 Instrumentation et systèmes mécaniques |
---|---|
Département: | Département de génie mécanique |
Organismes subventionnaires: | CRSNG/NSERC, China Scholarship Council |
Numéro de subvention: | NETGP479639-15, 201608880003 |
URL de PolyPublie: | https://publications.polymtl.ca/3577/ |
Titre de la revue: | Journal of Manufacturing and Materials Processing (vol. 2, no 3) |
Maison d'édition: | MDPI |
DOI: | 10.3390/jmmp2030060 |
URL officielle: | https://doi.org/10.3390/jmmp2030060 |
Date du dépôt: | 09 mars 2020 12:33 |
Dernière modification: | 26 sept. 2024 10:13 |
Citer en APA 7: | Xing, K., Mayer, J. R. R., & Achiche, S. (2018). Machine tool volumetric error features extraction and classification using principal component analysis and K-means. Journal of Manufacturing and Materials Processing, 2(3). https://doi.org/10.3390/jmmp2030060 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions