<  Retour au portail Polytechnique Montréal

Novel convolution kernels for computer vision and shape analysis based on electromagnetism

Dominique Beaini, Sofiane Achiche, Yann-Seing Law-Kam Cio et Maxime Raison

Rapport (2018)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

Computer vision is a growing field with a lot of new applications in automation and robotics, since it allows the analysis of images and shapes for the generation of numerical or analytical information. One of the most used method of information extraction is image filtering through convolution kernels, with each kernel specialized for specific applications. The objective of this paper is to present a novel convolution kernels, based on principles of electromagnetic potentials and fields, for a general use in computer vision and to demonstrate its usage for shape and stroke analysis. Such filtering possesses unique geometrical properties that can be interpreted using well understood physics theorems. Therefore, this paper focuses on the development of the electromagnetic kernels and on their application on images for shape and stroke analysis. It also presents several interesting features of electromagnetic kernels, such as resolution, size and orientation independence, robustness to noise and deformation, long distance stroke interaction and ability to work with 3D images.

Mots clés

Shape analysis; Stroke analysis; Computer vision; Electromagnetic potential field; Feature extraction; Image filtering; Image convolution

Sujet(s): 2100 Génie mécanique > 2100 Génie mécanique
2600 Robotique > 2603 Vision artificielle
2700 Technologie de l'information > 2700 Technologie de l'information
2700 Technologie de l'information > 2708 Traitement d'images et traitement vidéo
Département: Département de génie mécanique
Organismes subventionnaires: CRSNG/NSERC, FRQNT/INTER, MEDITIS
URL de PolyPublie: https://publications.polymtl.ca/3162/
Date du dépôt: 20 juin 2018 15:34
Dernière modification: 28 sept. 2024 10:44
Citer en APA 7: Beaini, D., Achiche, S., Law-Kam Cio, Y.-S., & Raison, M. (2018). Novel convolution kernels for computer vision and shape analysis based on electromagnetism. (Rapport). https://publications.polymtl.ca/3162/

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Actions réservées au personnel

Afficher document Afficher document