Dominique Beaini, Sofiane Achiche, Yann-Seing Law-Kam Cio et Maxime Raison
Rapport (2018)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (1MB) |
Abstract
Computer vision is a growing field with a lot of new applications in automation and robotics, since it allows the analysis of images and shapes for the generation of numerical or analytical information. One of the most used method of information extraction is image filtering through convolution kernels, with each kernel specialized for specific applications. The objective of this paper is to present a novel convolution kernels, based on principles of electromagnetic potentials and fields, for a general use in computer vision and to demonstrate its usage for shape and stroke analysis. Such filtering possesses unique geometrical properties that can be interpreted using well understood physics theorems. Therefore, this paper focuses on the development of the electromagnetic kernels and on their application on images for shape and stroke analysis. It also presents several interesting features of electromagnetic kernels, such as resolution, size and orientation independence, robustness to noise and deformation, long distance stroke interaction and ability to work with 3D images.
Mots clés
Shape analysis; Stroke analysis; Computer vision; Electromagnetic potential field; Feature extraction; Image filtering; Image convolution
Sujet(s): |
2100 Génie mécanique > 2100 Génie mécanique 2600 Robotique > 2603 Vision artificielle 2700 Technologie de l'information > 2700 Technologie de l'information 2700 Technologie de l'information > 2708 Traitement d'images et traitement vidéo |
---|---|
Département: | Département de génie mécanique |
Organismes subventionnaires: | CRSNG/NSERC, FRQNT/INTER, MEDITIS |
URL de PolyPublie: | https://publications.polymtl.ca/3162/ |
Date du dépôt: | 20 juin 2018 15:34 |
Dernière modification: | 28 sept. 2024 10:44 |
Citer en APA 7: | Beaini, D., Achiche, S., Law-Kam Cio, Y.-S., & Raison, M. (2018). Novel convolution kernels for computer vision and shape analysis based on electromagnetism. (Rapport). https://publications.polymtl.ca/3162/ |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements