Ahmad Barirani, Bruno Agard et Catherine Beaudry
Article de revue (2013)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (599kB) |
Abstract
Knowledge management from a strategic planning point of view often requires having an accurate understanding of a firm's or a nation's competences in a given technological discipline. Knowledge maps have been used for the purpose of discovering the location, ownership and value of intellectual assets. The purpose of this article is to develop a new method for assessing national and firm-level competences in a given technological discipline. To achieve this goal, we draw a competence map by applying agglomerative hierarchical clustering on a sample of patents. Considering the top levels of the resulting dendrogram, each cluster represents one of the technological branches of nanotechnology and its children branches are those that are most technologically proximate. We also assign a label to each branch by extracting the most relevant words found in each of them. From the information about patents inventors' cities, we are able to identify where the largest invention communities are located. Finally, we use information regarding patent assignees and identify the most productive firms. We apply our method to the case of the emerging and multidisciplinary Canadian nanotechnology industry.
Mots clés
Knowledge mapping, Innovation, Citation networks analysis, Data mining, Agglomerative hierarchical clustering, Vector space model, Nanotechnology
Sujet(s): | 1600 Génie industriel > 1600 Génie industriel |
---|---|
Département: | Département de mathématiques et de génie industriel |
Organismes subventionnaires: | CRSH, IRSC, CRSNG |
URL de PolyPublie: | https://publications.polymtl.ca/2312/ |
Titre de la revue: | Journal of Intelligent Manufacturing (vol. 24, no 2) |
Maison d'édition: | Springer |
DOI: | 10.1007/s10845-011-0600-y |
URL officielle: | https://doi.org/10.1007/s10845-011-0600-y |
Date du dépôt: | 03 oct. 2016 11:49 |
Dernière modification: | 27 sept. 2024 20:44 |
Citer en APA 7: | Barirani, A., Agard, B., & Beaudry, C. (2013). Competence maps using agglomerative hierarchical clustering. Journal of Intelligent Manufacturing, 24(2), 373-384. https://doi.org/10.1007/s10845-011-0600-y |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions