<  Retour au portail Polytechnique Montréal

Competence maps using agglomerative hierarchical clustering

Ahmad Barirani, Bruno Agard et Catherine Beaudry

Article de revue (2013)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version finale avant publication
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (599kB)
Afficher le résumé
Cacher le résumé

Abstract

Knowledge management from a strategic planning point of view often requires having an accurate understanding of a firm's or a nation's competences in a given technological discipline. Knowledge maps have been used for the purpose of discovering the location, ownership and value of intellectual assets. The purpose of this article is to develop a new method for assessing national and firm-level competences in a given technological discipline. To achieve this goal, we draw a competence map by applying agglomerative hierarchical clustering on a sample of patents. Considering the top levels of the resulting dendrogram, each cluster represents one of the technological branches of nanotechnology and its children branches are those that are most technologically proximate. We also assign a label to each branch by extracting the most relevant words found in each of them. From the information about patents inventors' cities, we are able to identify where the largest invention communities are located. Finally, we use information regarding patent assignees and identify the most productive firms. We apply our method to the case of the emerging and multidisciplinary Canadian nanotechnology industry.

Mots clés

Knowledge mapping, Innovation, Citation networks analysis, Data mining, Agglomerative hierarchical clustering, Vector space model, Nanotechnology

Sujet(s): 1600 Génie industriel > 1600 Génie industriel
Département: Département de mathématiques et de génie industriel
Organismes subventionnaires: CRSH, IRSC, CRSNG
URL de PolyPublie: https://publications.polymtl.ca/2312/
Titre de la revue: Journal of Intelligent Manufacturing (vol. 24, no 2)
Maison d'édition: Springer
DOI: 10.1007/s10845-011-0600-y
URL officielle: https://doi.org/10.1007/s10845-011-0600-y
Date du dépôt: 03 oct. 2016 11:49
Dernière modification: 27 sept. 2024 20:44
Citer en APA 7: Barirani, A., Agard, B., & Beaudry, C. (2013). Competence maps using agglomerative hierarchical clustering. Journal of Intelligent Manufacturing, 24(2), 373-384. https://doi.org/10.1007/s10845-011-0600-y

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document