<  Retour au portail Polytechnique Montréal

Predicting carsharing station-based trip generation using a growth model

Marlène Ménoire, Grzegorz Wielinski, Catherine Morency et Martin Trépanier

Communication écrite (2019)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (938kB)
Afficher le résumé
Cacher le résumé

Abstract

Carsharing is a service that allows members to rent cars for a limited time. In Montreal, Quebec, Canada, two types of services exist: a station-based and a free-floating service. This paper proposes a trip generation model for the station-based service of the Communauto carsharing operator for 2016. To better understand relations between space and time, a growth model is used, considering these factors at different levels. For example, some factors can impact all stations similarly, while other factors may impact each station differently. Thus, this model allows to consider both spatial and temporal variables allowing more precise estimations. The aim of this research is to estimate carsharing trip generation at the station level and provide insights into the impacts of implementing new stations on demand. A step-by-step approach was adopted to define the best predictive model for the use of carsharing stations. While more complex model formulations need to be tested to enhance the analysis, the final growth model obtained indicates that, in addition to the number of vehicles available at the stations, several exogenous factors have a significant impact on the trip generation rate of a carsharing station. For instance, the model shows that demographic factors, walkability level and number of bus stations have significant impacts on the use of carsharing stations.

Mots clés

carsharing; station-based; trip generation; growth model; multilevel analysis; multivariate approach

Département: Département de mathématiques et de génie industriel
Département des génies civil, géologique et des mines
Centre de recherche: CIRRELT - Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport
Organismes subventionnaires: CRSNG/NSERC
Numéro de subvention: NSERC RDCPJ #474642-14
URL de PolyPublie: https://publications.polymtl.ca/10654/
Nom de la conférence: 15th World Conference on Transport Research (WCTR 2019)
Lieu de la conférence: Mumbai, India
Date(s) de la conférence: 2019-05-26 - 2019-05-31
Titre de la revue: Transportation Research Procedia (vol. 48)
Maison d'édition: Elsevier
DOI: 10.1016/j.trpro.2020.08.192
URL officielle: https://doi.org/10.1016/j.trpro.2020.08.192
Date du dépôt: 20 nov. 2023 09:37
Dernière modification: 27 sept. 2024 22:31
Citer en APA 7: Ménoire, M., Wielinski, G., Morency, C., & Trépanier, M. (mai 2019). Predicting carsharing station-based trip generation using a growth model [Communication écrite]. 15th World Conference on Transport Research (WCTR 2019), Mumbai, India. Publié dans Transportation Research Procedia, 48. https://doi.org/10.1016/j.trpro.2020.08.192

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document