Amr Mohamed Ali, El-Adl Mohamed, Soumaya Yacout et Yasser Shaban
Article de revue (2020)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (732kB) |
Abstract
New online fault monitoring and alarm systems, with the aid of Cyber-Physical Systems (CPS) and Cloud Technology (CT), are examined in this article within the context of Industry 4.0. The data collected from machines is used to implement maintenance strategies based on the diagnosis and prognosis of the machines' performance. As such, the purpose of this paper is to propose a Cloud Computing Platform containing three layers of technologies forming a Cyber-Physical System which receives unlabelled data to generate an interpreted online decision for the local team, as well as collecting historical data to improve the analyzer. The proposed troubleshooter is tested using unlabelled experimental data sets of rolling element bearing. Finally, the current and future Fault Diagnosis Systems and Cloud Technologies applications in the maintenance field are discussed.
Mots clés
Remote Fault Diagnosis System (RFDS); Logical Analysis of Data (LAD); Cyber-Physical System (CPS); Pattern recognition; Industry 4.0; Cloud computing; Sistema de diagnóstico remoto de falhas (RFDS); Análise lógica de dados (LAD); Sistema físico cibernético (CPS); Reconhecimento de padrões; Indústria 4.0; Computação em nuvem
Sujet(s): |
2700 Technologie de l'information > 2702 Organisation des systèmes informatiques 2700 Technologie de l'information > 2714 Mathématiques de l'informatique |
---|---|
Département: | Département de mathématiques et de génie industriel |
Organismes subventionnaires: | CAPES |
URL de PolyPublie: | https://publications.polymtl.ca/10596/ |
Titre de la revue: | Gestão & Produção (vol. 27, no 3) |
Maison d'édition: | Scientific Electronic Library Online |
DOI: | 10.1590/0104-530x5378-20 |
URL officielle: | https://doi.org/10.1590/0104-530x5378-20 |
Date du dépôt: | 18 juil. 2023 15:44 |
Dernière modification: | 25 sept. 2024 18:46 |
Citer en APA 7: | Ali, A. M., Mohamed, E.-A., Yacout, S., & Shaban, Y. (2020). Cloud computing based unsupervised fault diagnosis system in the context of Industry 4.0. Gestão & Produção, 27(3), 19 pages. https://doi.org/10.1590/0104-530x5378-20 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions